Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(10)2023 May 13.
Article in English | MEDLINE | ID: mdl-37240077

ABSTRACT

Some transcripts that are not translated into proteins can be encoded by the mammalian genome. Long noncoding RNAs (lncRNAs) are noncoding RNAs that can function as decoys, scaffolds, and enhancer RNAs and can regulate other molecules, including microRNAs. Therefore, it is essential that we obtain a better understanding of the regulatory mechanisms of lncRNAs. In cancer, lncRNAs function through several mechanisms, including important biological pathways, and the abnormal expression of lncRNAs contributes to breast cancer (BC) initiation and progression. BC is the most common type of cancer among women worldwide and has a high mortality rate. Genetic and epigenetic alterations that can be regulated by lncRNAs may be related to early events of BC progression. Ductal carcinoma in situ (DCIS) is a noninvasive BC that is considered an important preinvasive BC early event because it can progress to invasive BC. Therefore, the identification of predictive biomarkers of DCIS-invasive BC progression has become increasingly important in an attempt to optimize the treatment and quality of life of patients. In this context, this review will address the current knowledge about the role of lncRNAs in DCIS and their potential contribution to the progression of DCIS to invasive BC.


Subject(s)
Breast Neoplasms , Carcinoma in Situ , Carcinoma, Intraductal, Noninfiltrating , RNA, Long Noncoding , Animals , Humans , Female , Carcinoma, Intraductal, Noninfiltrating/genetics , Carcinoma, Intraductal, Noninfiltrating/pathology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Quality of Life , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Carcinoma in Situ/genetics , Epigenesis, Genetic , Mammals/metabolism
2.
Genes (Basel) ; 14(3)2023 03 01.
Article in English | MEDLINE | ID: mdl-36980893

ABSTRACT

Gastric cancer (GC) is the fifth leading cause of cancer-associated death worldwide, accounting for 768,793 related deaths and 1,089,103 new cases in 2020. Despite diagnostic advances, GC is often detected in late stages. Through a systematic literature search, this study focuses on the associations between the Iroquois gene family and GC. Accumulating evidence indicates that Iroquois genes are involved in the regulation of various physiological and pathological processes, including cancer. To date, information about Iroquois genes in GC is very limited. In recent years, the expression and function of Iroquois genes examined in different models have suggested that they play important roles in cell and cancer biology, since they were identified to be related to important signaling pathways, such as wingless, hedgehog, mitogen-activated proteins, fibroblast growth factor, TGFß, and the PI3K/Akt and NF-kB pathways. In cancer, depending on the tumor, Iroquois genes can act as oncogenes or tumor suppressor genes. However, in GC, they seem to mostly act as tumor suppressor genes and can be regulated by several mechanisms, including methylation, microRNAs and important GC-related pathogens. In this review, we provide an up-to-date review of the current knowledge regarding Iroquois family genes in GC.


Subject(s)
MicroRNAs , Stomach Neoplasms , Humans , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Carcinogenesis/genetics , Carcinogenesis/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Signal Transduction/genetics , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology
3.
Sci Rep ; 11(1): 21159, 2021 10 27.
Article in English | MEDLINE | ID: mdl-34707101

ABSTRACT

Using chip array assays, we identified differentially expressed genes via a comparison between luminal A breast cancer subtype and normal mammary ductal cells from healthy donors. In silico analysis confirmed by western blot and immunohistochemistry revealed that C-JUN and C-FOS transcription factors are activated in luminal A patients as potential upstream regulators of these differentially expressed genes. Using a chip-on-chip assay, we identified potential C-JUN and C-FOS targets. Among these genes, the NRIP1 gene was revealed to be targeted by C-JUN and C-FOS. This was confirmed after identification and validation with transfection assays specific binding of C-JUN and C-FOS at consensus binding sites. NRIP1 is not only upregulated in luminal A patients and cell lines but also regulates breast cancer-related genes, including PR, ESR1 and CCND1. These results were confirmed by NRIP1 siRNA knockdown and chip array assays, thus highlighting the putative role of NRIP1 in PGR, ESR1 and CCND1 transcriptional regulation and suggesting that NRIP1 could play an important role in breast cancer ductal cell initiation.


Subject(s)
Breast Neoplasms/metabolism , Carcinoma, Ductal, Breast/metabolism , Gene Expression Regulation, Neoplastic , Nuclear Receptor Interacting Protein 1/metabolism , Adult , Aged , Breast Neoplasms/genetics , Carcinoma, Ductal, Breast/genetics , Cyclin D1/genetics , Cyclin D1/metabolism , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Female , Humans , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , JNK Mitogen-Activated Protein Kinases/metabolism , MCF-7 Cells , Middle Aged , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Nuclear Receptor Interacting Protein 1/genetics , Proto-Oncogene Proteins c-fos/metabolism , Transcriptome
4.
Genes (Basel) ; 12(4)2021 04 17.
Article in English | MEDLINE | ID: mdl-33920562

ABSTRACT

Folate (vitamin B9) is found in some water-soluble foods or as a synthetic form of folic acid and is involved in many essential biochemical processes. Dietary folate is converted into tetrahydrofolate, a vital methyl donor for most methylation reactions, including DNA methylation. 5,10-methylene tetrahydrofolate reductase (MTHFR) is a critical enzyme in the folate metabolism pathway that converts 5,10-methylenetetrahydrofolate into 5-methyltetrahydrofolate, which produces a methyl donor for the remethylation of homocysteine to methionine. MTHFR polymorphisms result in reduced enzyme activity and altered levels of DNA methylation and synthesis. MTHFR polymorphisms have been linked to increased risks of several pathologies, including cancer. Breast cancer, gliomas and gastric cancer are highly heterogeneous and aggressive diseases associated with high mortality rates. The impact of MTHFR polymorphisms on these tumors remains controversial in the literature. This review discusses the relationship between the MTHFR C677T and A1298C polymorphisms and the increased risk of breast cancer, gliomas, and gastric cancer. Additionally, we highlight the relevance of ethnic and dietary aspects of population-based studies and histological stratification of highly heterogeneous tumors. Finally, this review discusses these aspects as potential factors responsible for the controversial literature concerning MTHFR polymorphisms.


Subject(s)
Brain Neoplasms/genetics , Breast Neoplasms/genetics , Glioma/genetics , Methylenetetrahydrofolate Reductase (NADPH2)/genetics , Polymorphism, Single Nucleotide , Stomach Neoplasms/genetics , Brain Neoplasms/ethnology , Brain Neoplasms/metabolism , Breast Neoplasms/ethnology , Breast Neoplasms/metabolism , DNA Methylation , Female , Folic Acid/metabolism , Genetic Predisposition to Disease , Glioma/ethnology , Glioma/metabolism , Humans , Male , Methylenetetrahydrofolate Reductase (NADPH2)/metabolism , Stomach Neoplasms/ethnology , Stomach Neoplasms/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...