Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 16(7): e0254447, 2021.
Article in English | MEDLINE | ID: mdl-34242346

ABSTRACT

Akt/PKB is a kinase involved in the regulation of a wide variety of cell processes. Its activity is modulated by diverse post-translational modifications (PTMs). Particularly, conjugation of the small ubiquitin-related modifier (SUMO) to this kinase impacts on multiple cellular functions, such as proliferation and splicing. In embryonic stem (ES) cells, this kinase is key for pluripotency maintenance. Among other functions, Akt is known to promote the expression of Nanog, a central pluripotency transcription factor (TF). However, the relevance of this specific PTM of Akt has not been previously analyzed in this context. In this work, we study the effect of Akt1 variants with differential SUMOylation susceptibility on the expression of Nanog. Our results demonstrate that both, the Akt1 capability of being modified by SUMO conjugation and a functional SUMO conjugase activity are required to induce Nanog gene expression. Likewise, we found that the common oncogenic E17K Akt1 mutant affected Nanog expression in ES cells also in a SUMOylatability dependent manner. Interestingly, this outcome takes places in ES cells but not in a non-pluripotent heterologous system, suggesting the presence of a crucial factor for this induction in ES cells. Remarkably, the two major candidate factors to mediate this induction, GSK3-ß and Tbx3, are non-essential players of this effect, suggesting a complex mechanism probably involving non-canonical pathways. Furthermore, we found that Akt1 subcellular distribution does not depend on its SUMOylatability, indicating that Akt localization has no influence on the effect on Nanog, and that besides the membrane localization of E17K Akt mutant, SUMOylation is also required for its hyperactivity. Our results highlight the impact of SUMO conjugation in the function of a kinase relevant for a plethora of cellular processes, including the control of a key pluripotency TF.


Subject(s)
Proto-Oncogene Proteins c-akt , Sumoylation , Animals , Embryonic Stem Cells/metabolism , Ubiquitin/metabolism
2.
FEBS Lett ; 595(14): 1949-1961, 2021 07.
Article in English | MEDLINE | ID: mdl-34056710

ABSTRACT

In embryonic stem (ES) cells, oxidative stress control is crucial for genomic stability, self-renewal, and cell differentiation. Heme oxygenase-1 (HO-1) is a key player of the antioxidant system and is also involved in stem cell differentiation and pluripotency acquisition. We found that the HO-1 gene is expressed in ES cells and induced after promoting differentiation. Moreover, downregulation of the pluripotency transcription factor (TF) OCT4 increased HO-1 mRNA levels in ES cells, and analysis of ChIP-seq public data revealed that this TF binds to the HO-1 gene locus in pluripotent cells. Finally, ectopic expression of OCT4 in heterologous systems repressed a reporter carrying the HO-1 gene promoter and the endogenous gene. Hence, this work highlights the connection between pluripotency and redox homeostasis.


Subject(s)
Gene Expression Regulation , Heme Oxygenase-1/genetics , Membrane Proteins/genetics , Mouse Embryonic Stem Cells/metabolism , Octamer Transcription Factor-3/genetics , Pluripotent Stem Cells/metabolism , RNA, Messenger/genetics , Animals , Benzamides/pharmacology , Cell Differentiation/drug effects , Diphenylamine/analogs & derivatives , Diphenylamine/pharmacology , Embryo, Mammalian , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Heme Oxygenase-1/metabolism , Luciferases/genetics , Luciferases/metabolism , Membrane Proteins/metabolism , Mice , Mouse Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/drug effects , NIH 3T3 Cells , Nanog Homeobox Protein/antagonists & inhibitors , Nanog Homeobox Protein/genetics , Nanog Homeobox Protein/metabolism , Octamer Transcription Factor-3/antagonists & inhibitors , Octamer Transcription Factor-3/metabolism , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/drug effects , Promoter Regions, Genetic , Pyridines/pharmacology , Pyrimidines/pharmacology , RNA, Messenger/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , SOXB1 Transcription Factors/antagonists & inhibitors , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism , Signal Transduction , Transcription, Genetic
3.
Cells ; 10(1)2020 12 29.
Article in English | MEDLINE | ID: mdl-33383653

ABSTRACT

Stem cells genome safeguarding requires strict oxidative stress control. Heme oxygenase-1 (HO-1) and p53 are relevant components of the cellular defense system. p53 controls cellular response to multiple types of harmful stimulus, including oxidative stress. Otherwise, besides having a protective role, HO-1 is also involved in embryo development and in embryonic stem (ES) cells differentiation. Although both proteins have been extensively studied, little is known about their relationship in stem cells. The aim of this work is to explore HO-1-p53 interplay in ES cells. We studied HO-1 expression in p53 knockout (KO) ES cells and we found that they have higher HO-1 protein levels but similar HO-1 mRNA levels than the wild type (WT) ES cell line. Furthermore, cycloheximide treatment increased HO-1 abundance in p53 KO cells suggesting that p53 modulates HO-1 protein stability. Notably, H2O2 treatment did not induce HO-1 expression in p53 KO ES cells. Finally, SOD2 protein levels are also increased while Sod2 transcripts are not in KO cells, further suggesting that the p53 null phenotype is associated with a reinforcement of the antioxidant machinery. Our results demonstrate the existence of a connection between p53 and HO-1 in ES cells, highlighting the relationship between these stress defense pathways.


Subject(s)
Heme Oxygenase-1/physiology , Human Embryonic Stem Cells , Tumor Suppressor Protein p53/physiology , Cell Differentiation , Cell Line , Gene Expression Regulation, Developmental , Gene Knockout Techniques , Heme Oxygenase-1/genetics , Human Embryonic Stem Cells/cytology , Human Embryonic Stem Cells/metabolism , Humans , Oxidative Stress , Signal Transduction , Superoxide Dismutase/metabolism
4.
BMC Res Notes ; 12(1): 370, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-31262352

ABSTRACT

OBJECTIVE: Redox homeostasis maintenance is essential to bring about cellular functions. Particularly, embryonic stem cells (ESCs) have high fidelity mechanisms for DNA repair, high activity of different antioxidant enzymes and low levels of oxidative stress. Although the expression and activity of antioxidant enzymes are reduced throughout the differentiation, the knowledge about the transcriptional regulation of genes involved in defense against oxidative stress is yet restricted. Since glutathione is a central component of a complex system involved in preserving cellular redox status, we aimed to study whether the expression of the glutathione reductase (Gsr) gene, which encodes an essential enzyme for cellular redox homeostasis, is modulated by the transcription factors critical for self-renewal and pluripotency of ESCs. RESULTS: We found that Gsr gene is expressed in ESCs during the pluripotent state and it was upregulated when these cells were induced to differentiate, concomitantly with Nanog decreased expression. Moreover, we found an increase in Gsr mRNA levels when Nanog was downregulated by a specific shRNA targeting this transcription factor in ESCs. Our results suggest that Nanog represses Gsr gene expression in ESCs, evidencing a role of this crucial pluripotency transcription factor in preservation of redox homeostasis in stem cells.


Subject(s)
Glutathione Reductase/genetics , Mouse Embryonic Stem Cells/metabolism , Nanog Homeobox Protein/genetics , Pluripotent Stem Cells/metabolism , Animals , Cell Differentiation , Cell Line , Gene Expression Regulation , Genes, Reporter , Glutathione Reductase/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Mice , Mouse Embryonic Stem Cells/cytology , Nanog Homeobox Protein/antagonists & inhibitors , Nanog Homeobox Protein/metabolism , Pluripotent Stem Cells/cytology , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Signal Transduction
5.
J Mol Biol ; 431(6): 1148-1159, 2019 03 15.
Article in English | MEDLINE | ID: mdl-30790630

ABSTRACT

Chromatin remodeling is fundamental for the dynamical changes in transcriptional programs that occur during development and stem cell differentiation. The histone acetyltransferase Kat6b is relevant for neurogenesis in mouse embryos, and mutations of this gene cause intellectual disability in humans. However, the molecular mechanisms involved in Kat6b mutant phenotype and the role of this chromatin modifier in embryonic stem (ES) cells remain elusive. In this work, we show that Kat6b is expressed in ES cells and is repressed during differentiation. Moreover, we found that this gene is regulated by the pluripotency transcription factors Nanog and Oct4. To study the functional relevance of Kat6b in ES cells, we generated a Kat6b knockout ES cell line (K6b-/-) using CRISPR/Cas9. Fluorescence correlation spectroscopy analyses suggest a more compact chromatin organization in K6b-/- cells and impaired interactions of Oct4 and Nanog with chromatin. Remarkably, K6b-/- cells showed a reduced efficiency to differentiate to neural lineage. These results reveal a role of Kat6b as a modulator of chromatin plasticity, its impact on chromatin-transcription factors interactions and its influence on cell fate decisions during neural development.


Subject(s)
Chromatin/metabolism , Embryonic Stem Cells/cytology , Histone Acetyltransferases/metabolism , Nanog Homeobox Protein/metabolism , Neurogenesis , Octamer Transcription Factor-3/metabolism , Animals , CRISPR-Cas Systems , Embryonic Stem Cells/metabolism , Gene Expression Regulation , Histone Acetyltransferases/genetics , Male , Mice, Nude
6.
Mech Dev ; 154: 116-121, 2018 12.
Article in English | MEDLINE | ID: mdl-29933066

ABSTRACT

Redox homeostasis is vital for cellular functions and to prevent the detrimental consequences of oxidative stress. Pluripotent stem cells (PSCs) have an enhanced antioxidant system which supports the preservation of their genome. Besides, reactive oxygen species (ROS) are proposed to be involved in both self-renewal maintenance and in differentiation in embryonic stem cells (ESCs). Increasing evidence shows that cellular systems related to the oxidative stress defense decline along differentiation of PSCs. Although redox homeostasis has been extensively studied for many years, the knowledge about the transcriptional regulation of the genes involved in these systems is still limited. In this work, we studied Sod1 gene modulation by the PSCs fundamental transcription factors Oct4, Sox2 and Nanog. We found that this gene, which is expressed in mouse ESCs (mESCs), was repressed when they were induced to differentiate. Accordingly, these factors induced Sod1 promoter activity in a trans-activation assay. Finally, Sod1 mRNA levels were reduced when Oct4, Sox2 and Nanog were down-regulated by a shRNA approach in mESCs. Taken together, we found that PSCs' key transcription factors are involved in the modulation of Sod1 gene, suggesting a relationship between the pluripotency core and redox homeostasis in these cells.


Subject(s)
Embryonic Stem Cells/metabolism , Nanog Homeobox Protein/genetics , Octamer Transcription Factor-3/genetics , SOXB1 Transcription Factors/genetics , Superoxide Dismutase-1/genetics , Animals , Cell Differentiation/genetics , Cells, Cultured , Down-Regulation , Embryonic Stem Cells/enzymology , Homeostasis/genetics , Mice , NIH 3T3 Cells , Nanog Homeobox Protein/metabolism , Octamer Transcription Factor-3/metabolism , Oxidation-Reduction , Oxidative Stress/genetics , Promoter Regions, Genetic , RNA, Messenger/genetics , RNA, Small Interfering/genetics , Reactive Oxygen Species/metabolism , SOXB1 Transcription Factors/metabolism , Superoxide Dismutase-1/biosynthesis , Transcription, Genetic , Transcriptional Activation
7.
Biochem Biophys Res Commun ; 473(1): 194-199, 2016 Apr 22.
Article in English | MEDLINE | ID: mdl-27012206

ABSTRACT

Addition of methyl groups to arginine residues is catalyzed by a group of enzymes called Protein Arginine Methyltransferases (Prmt). Although Prmt1 is essential in development, its paralogue Prmt8 has been poorly studied. This gene was reported to be expressed in nervous system and involved in neurogenesis. In this work, we found that Prmt8 is expressed in mouse embryonic stem cells (ESC) and in induced pluripotent stem cells, and modulated along differentiation to neural precursor cells. We found that Prmt8 promoter activity is induced by the pluripotency transcription factors Oct4, Sox2 and Nanog. Moreover, endogenous Prmt8 mRNA levels were reduced in ESC transfected with Sox2 shRNA vector. As a whole, our results indicate that Prmt8 is expressed in pluripotent stem cells and its transcription is modulated by pluripotency transcription factors. These findings suggest that besides its known function in nervous system, Prmt8 could play a role in pluripotent stem cells.


Subject(s)
Gene Expression Regulation, Enzymologic , Pluripotent Stem Cells/cytology , Protein-Arginine N-Methyltransferases/metabolism , SOXB1 Transcription Factors/metabolism , Animals , Cell Differentiation , Down-Regulation , Fibroblasts/metabolism , Homeodomain Proteins/metabolism , Mice , NIH 3T3 Cells , Nanog Homeobox Protein , Neurons/cytology , Octamer Transcription Factor-3/metabolism , Promoter Regions, Genetic , RNA, Small Interfering/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Transfection
8.
PLoS One ; 10(12): e0144336, 2015.
Article in English | MEDLINE | ID: mdl-26642061

ABSTRACT

Pluripotent stem cells possess complex systems that protect them from oxidative stress and ensure genomic stability, vital for their role in development. Even though it has been reported that antioxidant activity diminishes along stem cell differentiation, little is known about the transcriptional regulation of the involved genes. The reported modulation of some of these genes led us to hypothesize that some of them could be regulated by the transcription factors critical for self-renewal and pluripotency in embryonic stem cells (ESCs) and in induced pluripotent stem cells (iPSCs). In this work, we studied the expression profile of multiple genes involved in antioxidant defense systems in both ESCs and iPSCs. We found that Manganese superoxide dismutase gene (Mn-Sod/Sod2) was repressed during diverse differentiation protocols showing an expression pattern similar to Nanog gene. Moreover, Sod2 promoter activity was induced by Oct4 and Nanog when we performed a transactivation assay using two different reporter constructions. Finally, we studied Sod2 gene regulation by modulating the expression of Oct4 and Nanog in ESCs by shRNAs and found that downregulation of any of them reduced Sod2 expression. Our results indicate that pluripotency transcription factors positively modulate Sod2 gene transcription.


Subject(s)
Homeodomain Proteins/metabolism , Induced Pluripotent Stem Cells/physiology , Octamer Transcription Factor-3/metabolism , Superoxide Dismutase/genetics , Animals , Cell Differentiation , Cell Line , Embryonic Stem Cells/cytology , Gene Expression Regulation , Gene Expression Regulation, Enzymologic , Homeodomain Proteins/genetics , Induced Pluripotent Stem Cells/cytology , Mice , Nanog Homeobox Protein , Octamer Transcription Factor-3/genetics , Promoter Regions, Genetic , RNA, Small Interfering , Superoxide Dismutase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...