Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Biochemistry ; 42(8): 2282-90, 2003 Mar 04.
Article in English | MEDLINE | ID: mdl-12600195

ABSTRACT

The N-terminal domain of PTH(1-34) is critical for PTH-1 receptor (P1R) activation and has been postulated to be alpha-helical when bound to the receptor. We investigated the possibility that the side chains of residues 6 (Gln) and 10 (Gln or Asn) of PTH analogues, which would align on the same face of the predicted alpha-helix, could interact and thereby contribute to the PTH/P1R interaction process. We utilized PTH(1-11), PTH(1-14), and PTH(1-34) analogues substituted with alanine at one or both of these positions and functionally evaluated the peptides in cell lines (HKRK-B7 and HKRK-B28) stably expressing the P1R, as well as in COS-7 cells transiently expressing either the P1R or a P1R construct that lacks the amino-terminal extracellular domain (P1R-DelNt). In HKRK-B7 cells, the single substitutions of Gln(6) --> Ala and Gln(10) --> Ala reduced the cAMP-stimulating potency of [Ala(3),Gln(10),Arg(11)]rPTH(1-11)NH(2) approximately 60- and approximately 2-fold, respectively, whereas the combined Ala(6,10) substitution resulted in a approximately 2-fold gain in potency, relative to the single Ala(6) substitution. Similar effects on P1R-mediated cAMP-signaling potency and P1R-binding affinity were observed for these substitutions in [Aib(1,3),Gln(10),Har(11),Ala(12),Trp(14)]rPTH(1-14)NH(2). Installation of a lactam bridge between the Lys(6) and the Glu(10) side chains of [Ala(3,12),Lys(6),Glu(10),Har(11),Trp(14)]rPTH(1-14)NH(2) increased signaling potency 6-fold, relative to the nonbridged linear analogue. Alanine substitutions at positions 6 and/or 10 of [Tyr(34)]hPTH(1-34)NH(2) did not affect signaling potency nor binding affinity on the intact P1R; however, Ala(6) abolished PTH(1-34) signaling on P1R-DelNt, and this effect was reversed by Ala(10). The overall data support the hypothesis that the N-terminal portion of PTH is alpha-helical when bound to the activation domain of the PTH-1 receptor and they further suggest that intrahelical side chain interactions between residues 6 and 10 of the ligand can contribute to the receptor interaction process.


Subject(s)
Amino Acid Substitution , Parathyroid Hormone/chemistry , Receptors, Parathyroid Hormone/chemistry , Amino Acid Sequence , Animals , Cattle , Cyclic AMP/chemistry , Glutamic Acid/chemistry , Humans , LLC-PK1 Cells , Lactams/chemistry , Lysine/chemistry , Molecular Sequence Data , Opossums , Parathyroid Hormone/physiology , Peptide Fragments/chemistry , Peptide Fragments/physiology , Protein Binding , Protein Structure, Secondary , Rats , Receptors, Parathyroid Hormone/physiology , Swine
2.
Biochemistry ; 41(44): 13224-33, 2002 Nov 05.
Article in English | MEDLINE | ID: mdl-12403624

ABSTRACT

Recent data suggest that the binding of parathyroid hormone (PTH)-(1-34) to the PTH-1 receptor (P1R) involves a high-affinity interaction between the C-terminal (15-34) domain of the ligand and the amino-terminal extracellular (N) domain of the receptor and a low-affinity interaction between the N-terminal (1-14) portion of PTH and the juxtamembrane (J) region of the receptor, with the latter interaction giving rise to signal transduction. We investigated whether residues C-terminal of position 14 in PTH(1-34) contribute to the J component of the interaction mechanism by comparing the capacity of PTH analogues N-terminally modified to improve J domain affinity and C-terminally truncated at position 14, 20, or 34 to stimulate cAMP formation in COS-7 cells transiently transfected with P1R-delNt, a P1R construct that lacks most of the N domain. In these cells, the potency of [M]PTH(1-34) (M = Ala(1,3,12),Gln(10),Har(11),Trp(14),Arg(19)) was 120-fold greater than that of [M]PTH(1-14) (EC(50)s = 3.0 +/- 0.8 and 360 +/- 90 nM, respectively) but was equal to that of [M]PTH(1-20) (EC(50) = 2.3 +/- 0.3 nM). Reverting the Arg(19) substitution of [M]PTH(1-20) to the native Glu reduced cAMP signaling potency on P1R-delNt by 12-fold (EC(50) of [M]PTH(1-20)-Glu(19) = 27 +/- 4 nM), and it decreased the analog's capacity to inhibit the binding of the J domain-selective radioligand, (125)I-[Aib(1,3),Nle(8),M,Tyr(21)]ratPTH(1-21), to the full-length P1R stably expressed in LLC-PK1 cells by 40-fold. The Glu(19) --> Arg modification, however, did not affect the capacity of PTH(15-31) to inhibit the binding of the N domain-selective radioligand (125)I-bPTH(3-34) to the full-length receptor. The overall data suggest that residues (15-20) of PTH, and particularly residue 19, contribute to the capacity of the N-terminal portion of the ligand to interact with the juxtamembrane region of the receptor. The NMR data presented in the accompanying manuscript suggests that this role could involve intramolecular effects on secondary structure in the N-terminal portion of the ligand.


Subject(s)
Arginine/chemistry , Parathyroid Hormone/chemistry , Parathyroid Hormone/metabolism , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Receptors, Parathyroid Hormone/metabolism , Amino Acid Substitution/genetics , Animals , Arginine/genetics , Binding, Competitive/genetics , COS Cells , Cattle , Cell Membrane/genetics , Cell Membrane/metabolism , Chlorocebus aethiops , Glutamic Acid/genetics , Humans , LLC-PK1 Cells , Ligands , Parathyroid Hormone/genetics , Peptide Fragments/genetics , Protein Structure, Tertiary/genetics , Radioligand Assay , Rats , Receptors, Parathyroid Hormone/chemistry , Receptors, Parathyroid Hormone/genetics , Sequence Deletion , Swine
SELECTION OF CITATIONS
SEARCH DETAIL