Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neurobiol Aging ; 136: 9-22, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38286071

ABSTRACT

We explored neural processing differences associated with aging across four cognitive functions. In addition to ERP analysis, we included task-related microstate analyses, which identified stable states of neural activity across the scalp over time, to explore whole-head neural activation differences. Younger and older adults (YA, OA) completed face perception (N170), word-pair judgment (N400), visual oddball (P3), and flanker (ERN) tasks. Age-related effects differed across tasks. Despite age-related delayed latencies, N170 ERP and microstate analyses indicated no age-related differences in amplitudes or microstates. However, age-related condition differences were found for P3 and N00 amplitudes and scalp topographies: smaller condition differences were found for in OAs as well as broader centroparietal scalp distributions. Age group comparisons for the ERN revealed similar focal frontocentral activation loci, but differential activation patterns. Our findings of differential age effects across tasks are most consistent with the STAC-r framework which proposes that age-related effects differ depending on the resources available and the kinds of processing and cognitive load required of various tasks.


Subject(s)
Electroencephalography , Evoked Potentials , Humans , Male , Female , Aged , Evoked Potentials/physiology , Cognition/physiology , Aging/physiology , Judgment
2.
Int J Psychophysiol ; 176: 54-61, 2022 06.
Article in English | MEDLINE | ID: mdl-35292300

ABSTRACT

The P3 component (P300, P3b) is considered to be an effective index of attention and categorization processes when elicited in a visual oddball task, specifically reflecting the selection of a rare target item among frequent non-targets. Researchers have proposed that target categorization is guided by representations of target features held in working memory (WM), thus guiding attention and categorization processes to distinguish targets from non-targets. Although WM is theorized to have visuospatial, verbal and executive function components, most studies do not investigate how these WM components contribute to the P3. This study uses an individual differences approach to determine whether correlations between WM capabilities and P3 amplitudes indicate a common underlying cognitive construct. Participants (n = 140) completed an 80/20 visual oddball task to elicit the P3 as well as independent visual working memory (VWM), spatial working memory (SPWM), and executive function (task switching (TS) and digit symbol substitution (DSS)) tests. Results indicated that measures of executive function, DSS and TS, but not VWM or SPWM ability, correlated with and predicted faster task response times and greater P3 amplitudes. RT and WM measures were not correlated with P3 fractional area latencies. These results support context updating theory. Executive function WM availability, whether as a property of the participant's processing system or based on task demands, plays a functional role in the P3 and an important role in efficient visual categorization and goal-directed learning.


Subject(s)
Executive Function , Memory, Short-Term , Attention , Executive Function/physiology , Humans , Memory, Short-Term/physiology , Reaction Time
SELECTION OF CITATIONS
SEARCH DETAIL
...