Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 235
Filter
1.
Virus Evol ; 10(1): vead086, 2024.
Article in English | MEDLINE | ID: mdl-38361816

ABSTRACT

Respiratory syncytial virus (RSV) infection in immunocompromised individuals often leads to prolonged illness, progression to severe lower respiratory tract infection, and even death. How the host immune environment of the hematopoietic stem cell transplant (HCT) adults can affect viral genetic variation during an acute infection is not understood well. In the present study, we performed whole genome sequencing of RSV/A or RSV/B from samples collected longitudinally from HCT adults with normal (<14 days) and delayed (≥14 days) RSV clearance who were enrolled in a ribavirin trial. We determined the inter-host and intra-host genetic variation of RSV and the effect of mutations on putative glycosylation sites. The inter-host variation of RSV is centered in the attachment (G) and fusion (F) glycoprotein genes followed by polymerase (L) and matrix (M) genes. Interestingly, the overall genetic variation was constant between normal and delayed clearance groups for both RSV/A and RSV/B. Intra-host variation primarily occurred in the G gene followed by non-structural protein (NS1) and L genes; however, gain or loss of stop codons and frameshift mutations appeared only in the G gene and only in the delayed viral clearance group. Potential gain or loss of O-linked glycosylation sites in the G gene occurred both in RSV/A and RSV/B isolates. For RSV F gene, loss of N-linked glycosylation site occurred in three RSV/B isolates within an antigenic epitope. Both oral and aerosolized ribavirin did not cause any mutations in the L gene. In summary, prolonged viral shedding and immune deficiency resulted in RSV variation, especially in structural mutations in the G gene, possibly associated with immune evasion. Therefore, sequencing and monitoring of RSV isolates from immunocompromised patients are crucial as they can create escape mutants that can impact the effectiveness of upcoming vaccines and treatments.

2.
J Allergy Clin Immunol ; 153(4): 954-968, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38295882

ABSTRACT

Studies of asthma and allergy are generating increasing volumes of omics data for analysis and interpretation. The National Institute of Allergy and Infectious Diseases (NIAID) assembled a workshop comprising investigators studying asthma and allergic diseases using omics approaches, omics investigators from outside the field, and NIAID medical and scientific officers to discuss the following areas in asthma and allergy research: genomics, epigenomics, transcriptomics, microbiomics, metabolomics, proteomics, lipidomics, integrative omics, systems biology, and causal inference. Current states of the art, present challenges, novel and emerging strategies, and priorities for progress were presented and discussed for each area. This workshop report summarizes the major points and conclusions from this NIAID workshop. As a group, the investigators underscored the imperatives for rigorous analytic frameworks, integration of different omics data types, cross-disciplinary interaction, strategies for overcoming current limitations, and the overarching goal to improve scientific understanding and care of asthma and allergic diseases.


Subject(s)
Asthma , Hypersensitivity , United States , Humans , National Institute of Allergy and Infectious Diseases (U.S.) , Hypersensitivity/genetics , Asthma/etiology , Genomics , Proteomics , Metabolomics
3.
bioRxiv ; 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38187744

ABSTRACT

Gut microbiota produce tryptophan metabolites (TMs) important to homeostasis. However, measuring TM levels in stool and determining their microbial sources can be difficult. Here, we measured TMs from the indole pathway in fecal samples from 21 healthy adults with the goal to: 1) determine fecal TM concentrations in healthy individuals; 2) link TM levels to bacterial abundance using 16S and whole genome shotgun (WGS) sequencing data; and 3) predict likely bacterial sources of TM production. Within our samples, we identified 151 genera (16S) and 592 bacterial species (WGS). Eight TMs were found in ≥17 fecal samples, including four in all persons. To our knowledge, we are the first to report fecal levels for indole-3-lactate, indole-3-propionate, and 3-indoleacrylate levels in healthy persons. Overall, indole, indole-3-acetate (IAA), and skatole accounted for 86% of the eight TMs measured. Significant correlations were found between seven TMs and 29 bacterial species.  Predicted multiple TM sources support the notion of a complex network of TM production and regulation. Further, the data suggest key roles for Collinsella aerofaciens and IAA, a metabolite reported to maintain intestinal homeostasis through enhanced barrier integrity and anti-inflammatory/antioxidant activities. These findings extend our understanding of TMs and their relationship to the microbial species that act as effectors and/or regulators in the healthy intestine and may lead to novel strategies designed to manipulate tryptophan metabolism to prevent disease and/or restore health to the dysbiotic gut.

4.
Int J Environ Health Res ; 34(1): 564-574, 2024 Jan.
Article in English | MEDLINE | ID: mdl-36595614

ABSTRACT

The border city of El Paso, Texas, and its water utility, El Paso Water, initiated a SARS-CoV-2 wastewater monitoring program to assess virus trends and the appropriateness of a wastewater monitoring program for the community. Nearly weekly sample collection at four wastewater treatment facilities (WWTFs), serving distinct regions of the city, was analyzed for SARS-CoV-2 genes using the CDC 2019-Novel coronavirus Real-Time RT-PCR diagnostic panel. Virus concentrations ranged from 86.7 to 268,000 gc/L, varying across time and at each WWTF. The lag time between virus concentrations in wastewater and reported COVID-19 case rates (per 100,00 population) ranged from 4-24 days for the four WWTFs, with the strongest trend occurring from November 2021 - June 2022. This study is an assessment of the utility of a geographically refined SARS-CoV-2 wastewater monitoring program to supplement public health efforts that will manage the virus as it becomes endemic in El Paso.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/epidemiology , Wastewater , Texas/epidemiology , Water
5.
Cancer Cell ; 42(1): 85-100.e6, 2024 01 08.
Article in English | MEDLINE | ID: mdl-38157865

ABSTRACT

Microbes influence cancer initiation, progression and therapy responsiveness. IL-17 signaling contributes to gut barrier immunity by regulating microbes but also drives tumor growth. A knowledge gap remains regarding the influence of enteric IL-17-IL-17RA signaling and their microbial regulation on the behavior of distant tumors. We demonstrate that gut dysbiosis induced by systemic or gut epithelial deletion of IL-17RA induces growth of pancreatic and brain tumors due to excessive development of Th17, primary source of IL-17 in human and mouse pancreatic ductal adenocarcinoma, as well as B cells that circulate to distant tumors. Microbial dependent IL-17 signaling increases DUOX2 signaling in tumor cells. Inefficacy of pharmacological inhibition of IL-17RA is overcome with targeted microbial ablation that blocks the compensatory loop. These findings demonstrate the complexities of IL-17-IL-17RA signaling in different compartments and the relevance for accounting for its homeostatic host defense function during cancer therapy.


Subject(s)
Interleukin-17 , Pancreatic Neoplasms , Mice , Animals , Humans , Receptors, Interleukin-17/genetics , Mice, Knockout , Signal Transduction , Pancreatic Neoplasms/pathology
6.
medRxiv ; 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38076970

ABSTRACT

Obesity is increasingly prevalent in type 1 diabetes (T1D) and is associated with management problems and higher risk for diabetes complications. Gut microbiome changes have been described separately in each of T1D and obesity, however, it is unknown to what extent gut microbiome changes are seen when obesity and T1D concomitantly occur. OBJECTIVE: To describe the gut microbiome and microbial metabolite changes associated with obesity in T1D. We hypothesized significant gut microbial and metabolite differences between T1D youth who are lean (BMI: 5-<85%) vs. those with obesity (BMI: ≥95%). METHODS: We analyzed stool samples for gut microbial (using metagenomic shotgun sequencing) and short-chain fatty acid (SCFA) metabolite differences in lean (n=27) and obese (n=21) T1D youth. The mean±SD age was 15.3±2.2yrs, A1c 7.8±1.3%, diabetes duration 5.1±4.4yrs, 42.0% females, and 94.0% were White. Linear discriminant analysis (LDA) effect size (LEfSe) was used to identify taxa that best discriminated between the BMI groups. RESULTS: Bacterial community composition showed differences in species type (ß-diversity) by BMI group (p=0.013). At the genus level, there was a higher ratio of Prevotella to Bacteroides in the obese group (p=0.0058). LEfSe analysis showed a differential distribution of significantly abundant taxa in either the lean or obese groups, including increased relative abundance of Prevotella copri , among other taxa in the obese group. Functional profiling showed that pathways associated with decreased insulin sensitivity were upregulated in the obese group. Stool SCFAs (acetate, propionate and butyrate) were higher in the obese compared to the lean group (p<0.05 for all). CONCLUSIONS: Our findings identify gut microbiome, microbial metabolite and functional pathways differences associated with obesity in T1D. These findings could be helpful in identifying gut microbiome targeted therapies to manage obesity in T1D.

7.
EBioMedicine ; 98: 104873, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38040541

ABSTRACT

BACKGROUND: Accessible prebiotic foods hold strong potential to jointly target gut health and metabolic health in high-risk patients. The BE GONE trial targeted the gut microbiota of obese surveillance patients with a history of colorectal neoplasia through a straightforward bean intervention. METHODS: This low-risk, non-invasive dietary intervention trial was conducted at MD Anderson Cancer Center (Houston, TX, USA). Following a 4-week equilibration, patients were randomized to continue their usual diet without beans (control) or to add a daily cup of study beans to their usual diet (intervention) with immediate crossover at 8-weeks. Stool and fasting blood were collected every 4 weeks to assess the primary outcome of intra and inter-individual changes in the gut microbiome and in circulating markers and metabolites within 8 weeks. This study was registered on ClinicalTrials.gov as NCT02843425, recruitment is complete and long-term follow-up continues. FINDINGS: Of the 55 patients randomized by intervention sequence, 87% completed the 16-week trial, demonstrating an increase on-intervention in diversity [n = 48; linear mixed effect and 95% CI for inverse Simpson index: 0.16 (0.02, 0.30); p = 0.02] and shifts in multiple bacteria indicative of prebiotic efficacy, including increased Faecalibacterium, Eubacterium and Bifidobacterium (all p < 0.05). The circulating metabolome showed parallel shifts in nutrient and microbiome-derived metabolites, including increased pipecolic acid and decreased indole (all p < 0.002) that regressed upon returning to the usual diet. No significant changes were observed in circulating lipoproteins within 8 weeks; however, proteomic biomarkers of intestinal and systemic inflammatory response, fibroblast-growth factor-19 increased, and interleukin-10 receptor-α decreased (p = 0.01). INTERPRETATION: These findings underscore the prebiotic and potential therapeutic role of beans to enhance the gut microbiome and to regulate host markers associated with metabolic obesity and colorectal cancer, while further emphasizing the need for consistent and sustainable dietary adjustments in high-risk patients. FUNDING: This study was funded by the American Cancer Society.


Subject(s)
Gastrointestinal Microbiome , Prebiotics , Humans , Proteomics , Obesity/microbiology , Inflammation
8.
Curr Microbiol ; 81(1): 45, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38127093

ABSTRACT

C-reactive protein (CRP) is a commonly used marker of low-grade inflammation as well as a marker of acute infection. CRP levels are elevated in those with diabetes and increased CRP concentrations are a risk factor for developing type 2 diabetes. Gut microbiome effects on metabolism and immune responses can impact chronic inflammation, including affecting CRP levels, that in turn can lead to the development and maintenance of dysglycemia. Using a high-sensitivity C-reactive protein (hsCRP) assay capable of detecting subtle changes in C-reactive protein, we show that higher hsCRP levels specifically correlate with worsening glycemia, reduced microbial richness and evenness, and with a reduction in the Firmicutes/Bacteroidota ratio. These data demonstrate a pivotal role for CRP not only in the context of worsening glycemia and changes to the gut microbiota, but also highlight CRP as a potential target for mitigating type 2 diabetes progression or as a therapeutic target that could be manipulated through the microbiome. Understanding these processes will provide insights into the etiology of type 2 diabetes in addition to opening doors leading to possible novel diagnostic strategies and therapeutics.


Subject(s)
Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Microbiota , Humans , C-Reactive Protein , Inflammation
9.
Nat Commun ; 14(1): 7630, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37993433

ABSTRACT

Although the genetic basis and pathogenesis of type 1 diabetes have been studied extensively, how host responses to environmental factors might contribute to autoantibody development remains largely unknown. Here, we use longitudinal blood transcriptome sequencing data to characterize host responses in children within 12 months prior to the appearance of type 1 diabetes-linked islet autoantibodies, as well as matched control children. We report that children who present with insulin-specific autoantibodies first have distinct transcriptional profiles from those who develop GADA autoantibodies first. In particular, gene dosage-driven expression of GSTM1 is associated with GADA autoantibody positivity. Moreover, compared with controls, we observe increased monocyte and decreased B cell proportions 9-12 months prior to autoantibody positivity, especially in children who developed antibodies against insulin first. Lastly, we show that control children present transcriptional signatures consistent with robust immune responses to enterovirus infection, whereas children who later developed islet autoimmunity do not. These findings highlight distinct immune-related transcriptomic differences between case and control children prior to case progression to islet autoimmunity and uncover deficient antiviral response in children who later develop islet autoimmunity.


Subject(s)
Diabetes Mellitus, Type 1 , Enterovirus Infections , Islets of Langerhans , Humans , Child , Autoantibodies , Transcriptome , Autoimmunity/genetics , Insulin/metabolism , Enterovirus Infections/genetics , Islets of Langerhans/metabolism
10.
Gut Microbes ; 15(2): 2271629, 2023 12.
Article in English | MEDLINE | ID: mdl-37910478

ABSTRACT

The gut is a major source of bacteria and antigens that contribute to neuroinflammation after brain injury. Colonic epithelial cells (ECs) are responsible for secreting major cellular components of the innate defense system, including antimicrobial proteins (AMP) and mucins. These cells serve as a critical regulator of gut barrier function and maintain host-microbe homeostasis. In this study, we determined post-stroke host defense responses at the colonic epithelial surface in mice. We then tested if the enhancement of these epithelial protective mechanisms is beneficial in young and aged mice after stroke. AMPs were significantly increased in the colonic ECs of young males, but not in young females after experimental stroke. In contrast, mucin-related genes were enhanced in young females and contributed to mucus formation that maintains the distance between the host and gut bacteria. Bacterial community profiling was done using universal amplification of 16S rRNA gene sequences. The sex-specific colonic epithelial defense responses after stroke in young females were reversed with ovariectomy and led to a shift from a predominately mucin response to the enhanced AMP expression seen in males after stroke. Estradiol (E2) replacement prior to stroke in aged females increased mucin gene expression in the colonic ECs. Interestingly, we found that E2 treatment reduced stroke-associated neuronal hyperactivity in the insular cortex, a brain region that interacts with visceral organs such as the gut, in parallel to an increase in the composition of Lactobacillus and Bifidobacterium in the gut microbiota. This is the first study demonstrating sex differences in host defense mechanisms in the gut after brain injury.


Subject(s)
Brain Injuries , Gastrointestinal Microbiome , Mice , Female , Male , Animals , Intestinal Mucosa/microbiology , Estradiol , RNA, Ribosomal, 16S/genetics , Mucins/metabolism , Brain Injuries/metabolism
11.
Nat Commun ; 14(1): 6878, 2023 10 28.
Article in English | MEDLINE | ID: mdl-37898601

ABSTRACT

Wastewater is a discarded human by-product, but its analysis may help us understand the health of populations. Epidemiologists first analyzed wastewater to track outbreaks of poliovirus decades ago, but so-called wastewater-based epidemiology was reinvigorated to monitor SARS-CoV-2 levels while bypassing the difficulties and pit falls of individual testing. Current approaches overlook the activity of most human viruses and preclude a deeper understanding of human virome community dynamics. Here, we conduct a comprehensive sequencing-based analysis of 363 longitudinal wastewater samples from ten distinct sites in two major cities. Critical to detection is the use of a viral probe capture set targeting thousands of viral species or variants. Over 450 distinct pathogenic viruses from 28 viral families are observed, most of which have never been detected in such samples. Sequencing reads of established pathogens and emerging viruses correlate to clinical data sets of SARS-CoV-2, influenza virus, and monkeypox viruses, outlining the public health utility of this approach. Viral communities are tightly organized by space and time. Finally, the most abundant human viruses yield sequence variant information consistent with regional spread and evolution. We reveal the viral landscape of human wastewater and its potential to improve our understanding of outbreaks, transmission, and its effects on overall population health.


Subject(s)
Poliovirus , Virome , Humans , Virome/genetics , Wastewater , Cities , Disease Outbreaks , SARS-CoV-2/genetics
12.
Cancer Cell ; 41(11): 1945-1962.e11, 2023 11 13.
Article in English | MEDLINE | ID: mdl-37863066

ABSTRACT

Tumor microbiota can produce active metabolites that affect cancer and immune cell signaling, metabolism, and proliferation. Here, we explore tumor and gut microbiome features that affect chemoradiation response in patients with cervical cancer using a combined approach of deep microbiome sequencing, targeted bacterial culture, and in vitro assays. We identify that an obligate L-lactate-producing lactic acid bacterium found in tumors, Lactobacillus iners, is associated with decreased survival in patients, induces chemotherapy and radiation resistance in cervical cancer cells, and leads to metabolic rewiring, or alterations in multiple metabolic pathways, in tumors. Genomically similar L-lactate-producing lactic acid bacteria commensal to other body sites are also significantly associated with survival in colorectal, lung, head and neck, and skin cancers. Our findings demonstrate that lactic acid bacteria in the tumor microenvironment can alter tumor metabolism and lactate signaling pathways, causing therapeutic resistance. Lactic acid bacteria could be promising therapeutic targets across cancer types.


Subject(s)
Microbiota , Uterine Cervical Neoplasms , Female , Humans , Lactic Acid/metabolism , Uterine Cervical Neoplasms/radiotherapy , Lactobacillus/genetics , Lactobacillus/metabolism , Tumor Microenvironment
13.
bioRxiv ; 2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37808738

ABSTRACT

Humans are colonized with commensal bacteria soon after birth, and, while this colonization is affected by lifestyle and other factors, bacterial colonization proceeds through well-studied phases. However, less is known about phage communities in early human development due to small study sizes, inability to leverage large databases, and lack of appropriate bioinformatics tools. In this study, whole genome shotgun sequencing data from the TEDDY study, composed of 12,262 longitudinal samples from 887 children in 4 countries, is reanalyzed to assess phage and bacterial dynamics simultaneously. Reads from these samples were mapped to marker genes from both bacteria and a new database of tens of thousands of phage taxa from human microbiomes. We uncover that each child is colonized by hundreds of different phages during the early years, and phages are more transitory than bacteria. Participants' samples continually harbor new phage species over time whereas the diversification of bacterial species begins to saturate. Phage data improves the ability for machine learning models to discriminate samples by country. Finally, while phage populations were individual-specific, striking patterns arose from the larger dataset, showing clear trends of ecological succession amongst phages, which correlated well with putative host bacteria. Improved understanding of phage-bacterial relationships may reveal new means by which to shape and modulate the microbiome and its constituents to improve health and reduce disease, particularly in vulnerable populations where antibiotic use and/or other more drastic measures may not be advised.

14.
Diabetes Care ; 46(11): 1908-1915, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37607456

ABSTRACT

OBJECTIVE: To investigate gastrointestinal infection episodes (GIEs) in relation to the appearance of islet autoantibodies in The Environmental Determinants of Diabetes in the Young (TEDDY) cohort. RESEARCH DESIGN AND METHODS: GIEs on risk of autoantibodies against either insulin (IAA) or GAD (GADA) as the first-appearing autoantibody were assessed in a 10-year follow-up of 7,867 children. Stool virome was characterized in a nested case-control study. RESULTS: GIE reports (odds ratio [OR] 2.17 [95% CI 1.39-3.39]) as well as Norwalk viruses found in stool (OR 5.69 [1.36-23.7]) at <1 year of age were associated with an increased IAA risk at 2-4 years of age. GIEs reported at age 1 to <2 years correlated with a lower risk of IAA up to 10 years of age (OR 0.48 [0.35-0.68]). GIE reports at any other age were associated with an increase in IAA risk (OR 2.04 for IAA when GIE was observed 12-23 months prior [1.41-2.96]). Impacts on GADA risk were limited to GIEs <6 months prior to autoantibody development in children <4 years of age (OR 2.16 [1.54-3.02]). CONCLUSIONS: Bidirectional associations were observed. GIEs were associated with increased IAA risk when reported before 1 year of age or 12-23 months prior to IAA. Norwalk virus was identified as one possible candidate factor. GIEs reported during the 2nd year of life were associated with a decreased IAA risk.


Subject(s)
Diabetes Mellitus, Type 1 , Islets of Langerhans , Child , Humans , Infant , Child, Preschool , Autoantibodies , Case-Control Studies , Insulin , Insulin Antibodies , Glutamate Decarboxylase
15.
bioRxiv ; 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37398483

ABSTRACT

We describe the epidemiology and clinical characteristics of 29 patients with cancer and diarrhea in whom Enteroaggregative Escherichia coli (EAEC) was initially identified by GI BioFire panel multiplex. E. coli strains were successfully isolated from fecal cultures in 14 of 29 patients. Six of the 14 strains were identified as EAEC and 8 belonged to other diverse E. coli groups of unknown pathogenesis. We investigated these strains by their adherence to human intestinal organoids, cytotoxic responses, antibiotic resistance profile, full sequencing of their genomes, and annotation of their functional virulome. Interestingly, we discovered novel and enhanced adherence and aggregative patterns for several diarrheagenic pathotypes that were not previously seen when co-cultured with immortalized cell lines. EAEC isolates displayed exceptional adherence and aggregation to human colonoids compared not only to diverse GI E. coli , but also compared to prototype strains of other diarrheagenic E. coli . Some of the diverse E. coli strains that could not be classified as a conventional pathotype also showed an enhanced aggregative and cytotoxic response. Notably, we found a high carriage rate of antibiotic resistance genes in both EAEC strains and diverse GI E. coli isolates and observed a positive correlation between adherence to colonoids and the number of metal acquisition genes carried in both EAEC and the diverse E. coli strains. This work indicates that E. coli from cancer patients constitute strains of remarkable pathotypic and genomic divergence, including strains of unknown disease etiology with unique virulomes. Future studies will allow for the opportunity to re-define E. coli pathotypes with greater diagnostic accuracy and into more clinically relevant groupings.

16.
Res Sq ; 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37333115

ABSTRACT

Current understanding of viral dynamics of SARS-CoV-2 and host responses driving the pathogenic mechanisms in COVID-19 is rapidly evolving. Here, we conducted a longitudinal study to investigate gene expression patterns during acute SARS-CoV-2 illness. Cases included SARS-CoV-2 infected individuals with extremely high viral loads early in their illness, individuals having low SARS-CoV-2 viral loads early in their infection, and individuals testing negative for SARS-CoV-2. We could identify widespread transcriptional host responses to SARS-CoV-2 infection that were initially most strongly manifested in patients with extremely high initial viral loads, then attenuating within the patient over time as viral loads decreased. Genes correlated with SARS-CoV-2 viral load over time were similarly differentially expressed across independent datasets of SARS-CoV-2 infected lung and upper airway cells, from both in vitro systems and patient samples. We also generated expression data on the human nose organoid model during SARS-CoV-2 infection. The human nose organoid-generated host transcriptional response captured many aspects of responses observed in the above patient samples, while suggesting the existence of distinct host responses to SARS-CoV-2 depending on the cellular context, involving both epithelial and cellular immune responses. Our findings provide a catalog of SARS-CoV-2 host response genes changing over time.

17.
J Neuroinflammation ; 20(1): 135, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37264394

ABSTRACT

INTRODUCTION: Gut microbiota plays a critical role in the regulation of immune homeostasis. Accordingly, several autoimmune disorders have been associated with dysbiosis in the gut microbiota. Notably, the dysbiosis associated with central nervous system (CNS) autoimmunity involves a substantial reduction of bacteria belonging to Clostridia clusters IV and XIVa, which constitute major producers of short-chain fatty acids (SCFAs). Here we addressed the role of the surface receptor-mediated effects of SCFAs on mucosal T-cells in the development of CNS autoimmunity. METHODS: To induce CNS autoimmunity, we used the mouse model of experimental autoimmune encephalomyelitis (EAE) induced by immunization with the myelin oligodendrocyte glycoprotein (MOG)-derived peptide (MOG35-55 peptide). To address the effects of GPR43 stimulation on colonic TCRαß+ T-cells upon CNS autoimmunity, mucosal lymphocytes were isolated and stimulated with a selective GPR43 agonist ex vivo and then transferred into congenic mice undergoing EAE. Several subsets of lymphocytes infiltrating the CNS or those present in the gut epithelium and gut lamina propria were analysed by flow cytometry. In vitro migration assays were conducted with mucosal T-cells using transwells. RESULTS: Our results show a sharp and selective reduction of intestinal propionate at the peak of EAE development, accompanied by increased IFN-γ and decreased IL-22 in the colonic mucosa. Further analyses indicated that GPR43 was the primary SCFAs receptor expressed on T-cells, which was downregulated on colonic TCRαß+ T-cells upon CNS autoimmunity. The pharmacologic stimulation of GPR43 increased the anti-inflammatory function and reduced the pro-inflammatory features in several TCRαß+ T-cell subsets in the colonic mucosa upon EAE development. Furthermore, GPR43 stimulation induced the arrest of CNS-autoreactive T-cells in the colonic lamina propria, thus avoiding their infiltration into the CNS and dampening the disease development. Mechanistic analyses revealed that GPR43-stimulation on mucosal TCRαß+ T-cells inhibits their CXCR3-mediated migration towards CXCL11, which is released from the CNS upon neuroinflammation. CONCLUSIONS: These findings provide a novel mechanism involved in the gut-brain axis by which bacterial-derived products secreted in the gut mucosa might control the CNS tropism of autoreactive T-cells. Moreover, this study shows GPR43 expressed on T-cells as a promising therapeutic target for CNS autoimmunity.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Receptors, Antigen, T-Cell, alpha-beta , Mice , Animals , Autoimmunity , Dysbiosis , Central Nervous System , Myelin-Oligodendrocyte Glycoprotein/toxicity , Peptides , Mice, Inbred C57BL
18.
bioRxiv ; 2023 May 25.
Article in English | MEDLINE | ID: mdl-37292999

ABSTRACT

Current understanding of viral dynamics of SARS-CoV-2 and host responses driving the pathogenic mechanisms in COVID-19 is rapidly evolving. Here, we conducted a longitudinal study to investigate gene expression patterns during acute SARS-CoV-2 illness. Cases included SARS-CoV-2 infected individuals with extremely high viral loads early in their illness, individuals having low SARS-CoV-2 viral loads early in their infection, and individuals testing negative for SARS-CoV-2. We could identify widespread transcriptional host responses to SARS-CoV-2 infection that were initially most strongly manifested in patients with extremely high initial viral loads, then attenuating within the patient over time as viral loads decreased. Genes correlated with SARS-CoV-2 viral load over time were similarly differentially expressed across independent datasets of SARS-CoV-2 infected lung and upper airway cells, from both in vitro systems and patient samples. We also generated expression data on the human nose organoid model during SARS-CoV-2 infection. The human nose organoid-generated host transcriptional response captured many aspects of responses observed in the above patient samples, while suggesting the existence of distinct host responses to SARS-CoV-2 depending on the cellular context, involving both epithelial and cellular immune responses. Our findings provide a catalog of SARS-CoV-2 host response genes changing over time.

20.
Front Public Health ; 11: 1137881, 2023.
Article in English | MEDLINE | ID: mdl-37026145

ABSTRACT

Molecular analysis of public wastewater has great potential as a harbinger for community health and health threats. Long-used to monitor the presence of enteric viruses, in particular polio, recent successes of wastewater as a reliable lead indicator for trends in SARS-CoV-2 levels and hospital admissions has generated optimism and emerging evidence that similar science can be applied to other pathogens of pandemic potential (PPPs), especially respiratory viruses and their variants of concern (VOC). However, there are substantial challenges associated with implementation of this ideal, namely that multiple and distinct fields of inquiry must be bridged and coordinated. These include engineering, molecular sciences, temporal-geospatial analytics, epidemiology and medical, and governmental and public health messaging, all of which present their own caveats. Here, we outline a framework for an integrated, state-wide, end-to-end human pathogen monitoring program using wastewater to track viral PPPs.


Subject(s)
COVID-19 , Wastewater , Humans , SARS-CoV-2 , COVID-19/epidemiology , Pandemics , Public Health
SELECTION OF CITATIONS
SEARCH DETAIL
...