Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
PLoS One ; 12(3): e0169490, 2017.
Article in English | MEDLINE | ID: mdl-28257413

ABSTRACT

BACKGROUND: Traumatic brain injury (TBI) is a complex disorder that is traditionally stratified based on clinical signs and symptoms. Recent imaging and molecular biomarker innovations provide unprecedented opportunities for improved TBI precision medicine, incorporating patho-anatomical and molecular mechanisms. Complete integration of these diverse data for TBI diagnosis and patient stratification remains an unmet challenge. METHODS AND FINDINGS: The Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) Pilot multicenter study enrolled 586 acute TBI patients and collected diverse common data elements (TBI-CDEs) across the study population, including imaging, genetics, and clinical outcomes. We then applied topology-based data-driven discovery to identify natural subgroups of patients, based on the TBI-CDEs collected. Our hypothesis was two-fold: 1) A machine learning tool known as topological data analysis (TDA) would reveal data-driven patterns in patient outcomes to identify candidate biomarkers of recovery, and 2) TDA-identified biomarkers would significantly predict patient outcome recovery after TBI using more traditional methods of univariate statistical tests. TDA algorithms organized and mapped the data of TBI patients in multidimensional space, identifying a subset of mild TBI patients with a specific multivariate phenotype associated with unfavorable outcome at 3 and 6 months after injury. Further analyses revealed that this patient subset had high rates of post-traumatic stress disorder (PTSD), and enrichment in several distinct genetic polymorphisms associated with cellular responses to stress and DNA damage (PARP1), and in striatal dopamine processing (ANKK1, COMT, DRD2). CONCLUSIONS: TDA identified a unique diagnostic subgroup of patients with unfavorable outcome after mild TBI that were significantly predicted by the presence of specific genetic polymorphisms. Machine learning methods such as TDA may provide a robust method for patient stratification and treatment planning targeting identified biomarkers in future clinical trials in TBI patients. TRIAL REGISTRATION: ClinicalTrials.gov Identifier NCT01565551.


Subject(s)
Biomarkers , Brain Injuries, Traumatic/diagnosis , Stress Disorders, Post-Traumatic/diagnosis , Adult , Brain Injuries, Traumatic/diagnostic imaging , Brain Injuries, Traumatic/genetics , Brain Injuries, Traumatic/physiopathology , Catechol O-Methyltransferase/genetics , Female , Humans , Machine Learning , Male , Middle Aged , Poly (ADP-Ribose) Polymerase-1/genetics , Polymorphism, Single Nucleotide , Protein Serine-Threonine Kinases/genetics , Receptors, Dopamine D2/genetics , Stress Disorders, Post-Traumatic/diagnostic imaging , Stress Disorders, Post-Traumatic/genetics , Stress Disorders, Post-Traumatic/physiopathology
2.
Genet Med ; 18(2): 174-9, 2016 Feb.
Article in English | MEDLINE | ID: mdl-25880441

ABSTRACT

PURPOSE: Carrier screening for mutations contributing to cystic fibrosis (CF) is typically accomplished with panels composed of variants that are clinically validated primarily in patients of European descent. This approach has created a static genetic and phenotypic profile for CF. An opportunity now exists to reevaluate the disease profile of CFTR at a global population level. METHODS: CFTR allele and genotype frequencies were obtained from a nonpatient cohort with more than 60,000 unrelated personal genomes collected by the Exome Aggregation Consortium. Likely disease-contributing mutations were identified with the use of public database annotations and computational tools. RESULTS: We identified 131 previously described and likely pathogenic variants and another 210 untested variants with a high probability of causing protein damage. None of the current genetic screening panels or existing CFTR mutation databases covered a majority of deleterious variants in any geographical population outside of Europe. CONCLUSIONS: Both clinical annotation and mutation coverage by commercially available targeted screening panels for CF are strongly biased toward detection of reproductive risk in persons of European descent. South and East Asian populations are severely underrepresented, in part because of a definition of disease that preferences the phenotype associated with European-typical CFTR alleles.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis/diagnosis , Cystic Fibrosis/genetics , Genetic Testing , Mass Screening , Genetic Carrier Screening , Humans , Mutation , Risk Factors
4.
Nat Commun ; 6: 8581, 2015 Oct 14.
Article in English | MEDLINE | ID: mdl-26466022

ABSTRACT

Data-driven discovery in complex neurological disorders has potential to extract meaningful syndromic knowledge from large, heterogeneous data sets to enhance potential for precision medicine. Here we describe the application of topological data analysis (TDA) for data-driven discovery in preclinical traumatic brain injury (TBI) and spinal cord injury (SCI) data sets mined from the Visualized Syndromic Information and Outcomes for Neurotrauma-SCI (VISION-SCI) repository. Through direct visualization of inter-related histopathological, functional and health outcomes, TDA detected novel patterns across the syndromic network, uncovering interactions between SCI and co-occurring TBI, as well as detrimental drug effects in unpublished multicentre preclinical drug trial data in SCI. TDA also revealed that perioperative hypertension predicted long-term recovery better than any tested drug after thoracic SCI in rats. TDA-based data-driven discovery has great potential application for decision-support for basic research and clinical problems such as outcome assessment, neurocritical care, treatment planning and rapid, precision-diagnosis.


Subject(s)
Brain Injuries , Computational Biology/methods , Disease Models, Animal , Spinal Cord Injuries , Animals , Data Interpretation, Statistical , Rats
5.
Article in English | MEDLINE | ID: mdl-25250242

ABSTRACT

Shiga toxin-producing E. coli O157:H7 and non-O157 have been implicated in many foodborne illnesses caused by the consumption of contaminated fresh produce. However, data on their persistence in soils are limited due to the complexity in datasets generated from different environmental variables and bacterial taxa. There is a continuing need to distinguish the various environmental variables and different bacterial groups to understand the relationships among these factors and the pathogen survival. Using an approach called Topological Data Analysis (TDA); we reconstructed the relationship structure of E. coli O157 and non-O157 survival in 32 soils (16 organic and 16 conventionally managed soils) from California (CA) and Arizona (AZ) with a multi-resolution output. In our study, we took a community approach based on total soil microbiome to study community level survival and examining the network of the community as a whole and the relationship between its topology and biological processes. TDA produces a geometric representation of complex data sets. Network analysis showed that Shiga toxin negative strain E. coli O157:H7 4554 survived significantly longer in comparison to E. coli O157:H7 EDL 933, while the survival time of E. coli O157:NM was comparable to that of E. coli O157:H7 EDL 933 in all of the tested soils. Two non-O157 strains, E. coli O26:H11 and E. coli O103:H2 survived much longer than E. coli O91:H21 and the three strains of E. coli O157. We show that there are complex interactions between E. coli strain survival, microbial community structures, and soil parameters.


Subject(s)
Escherichia coli O157 , Escherichia coli , Microbial Viability , Soil Microbiology , Arizona , Bacterial Load , California , DNA, Bacterial , Escherichia coli/classification , Escherichia coli/genetics , Escherichia coli O157/classification , Escherichia coli O157/genetics , Food Microbiology , Sequence Analysis, DNA
6.
Mol Cell Proteomics ; 10(1): M110.000976, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20930037

ABSTRACT

We present a comprehensive analysis of the human methyltransferasome. Primary sequences, predicted secondary structures, and solved crystal structures of known methyltransferases were analyzed by hidden Markov models, Fisher-based statistical matrices, and fold recognition prediction-based threading algorithms to create a model, or profile, of each methyltransferase superfamily. These profiles were used to scan the human proteome database and detect novel methyltransferases. 208 proteins in the human genome are now identified as known or putative methyltransferases, including 38 proteins that were not annotated previously. To date, 30% of these proteins have been linked to disease states. Possible substrates of methylation for all of the SET domain and SPOUT methyltransferases as well as 100 of the 131 seven-ß-strand methyltransferases were surmised from sequence similarity clusters based on alignments of the substrate-specific domains.


Subject(s)
Methyltransferases/metabolism , Proteome/metabolism , Computational Biology , Humans , Methyltransferases/chemistry , Protein Structure, Secondary , Protein Structure, Tertiary , Proteome/chemistry , Saccharomyces cerevisiae/enzymology , Sequence Homology, Amino Acid , Substrate Specificity
7.
Mol Cell Proteomics ; 8(7): 1516-26, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19351663

ABSTRACT

A new program (Multiple Motif Scanning) was developed to scan the Saccharomyces cerevisiae proteome for Class I S-adenosylmethionine-dependent methyltransferases. Conserved Motifs I, Post I, II, and III were identified and expanded in known methyltransferases by primary sequence and secondary structural analysis through hidden Markov model profiling of both a yeast reference database and a reference database of methyltransferases with solved three-dimensional structures. The roles of the conserved amino acids in the four motifs of the methyltransferase structure and function were then analyzed to expand the previously defined motifs. Fisher-based negative log statistical matrix sets were developed from the prevalence of amino acids in the motifs. Multiple Motif Scanning is able to scan the proteome and score different combinations of the top fitting sequences for each motif. In addition, the program takes into account the conserved number of amino acids between the motifs. The output of the program is a ranked list of proteins that can be used to identify new methyltransferases and to reevaluate the assignment of previously identified putative methyltransferases. The Multiple Motif Scanning program can be used to develop a putative list of enzymes for any type of protein that has one or more motifs conserved at variable spacings and is freely available (www.chem.ucla.edu/files/MotifSetup.Zip). Finally hidden Markov model profile clustering analysis was used to subgroup Class I methyltransferases into groups that reflect their methyl-accepting substrate specificity.


Subject(s)
Amino Acid Motifs , Methyltransferases/genetics , Proteome/analysis , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae/enzymology , Sequence Analysis, Protein/methods , Software , Algorithms , Amino Acid Sequence , Animals , Databases, Protein , Humans , Methyltransferases/analysis , Models, Molecular , Molecular Sequence Data , Protein Structure, Secondary , Saccharomyces cerevisiae Proteins/analysis , Saccharomyces cerevisiae Proteins/genetics , Sequence Alignment/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...