Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Article in English | MEDLINE | ID: mdl-26736267

ABSTRACT

Non-invasive ultrasound imaging of carotid plaques can provide information on the characteristics of the arterial wall including the size, morphology and texture of the atherosclerotic plaques. Several studies were carried out that demonstrated the usefulness of these feature sets for differentiating between asymptomatic and symptomatic plaques and their corresponding cerebrovascular risk stratification. The aim of this study was to develop predictive modelling for estimating the time period of a stroke event by determining the risk for short term (less or equal to three years) or long term (more than three years) events. Data from 108 patients that had a stroke event have been used. The information collected included clinical and ultrasound imaging data. The prediction was performed at base line where patients were still asymptomatic. Several image texture analysis and clinical features were used in order to create a classification model. The different features were statistically analyzed and we conclude that image texture analysis features extracted using Spatial Gray Level Dependencies method had the best statistical significance. Several predictive models were derived based on Binary Logistic Regression (BLR) and Support Vector Machines (SVM) modelling. The best results were obtained with the SVM modelling models with an average correct classifications score of 77±7% for differentiating between stroke event occurrences within 3 years versus more than 3 years. Further work is needed in investigating additional multiscale texture analysis features as well as more modelling techniques on more subjects.


Subject(s)
Carotid Arteries/diagnostic imaging , Plaque, Atherosclerotic/diagnostic imaging , Stroke/diagnosis , Ultrasonography/methods , Carotid Arteries/pathology , Humans , Ischemia/diagnosis , Ischemia/diagnostic imaging , Logistic Models , Plaque, Atherosclerotic/complications , Risk Factors , Sensitivity and Specificity , Stroke/etiology , Support Vector Machine , Time Factors
2.
J Neuroradiol ; 42(2): 99-114, 2015 Apr.
Article in English | MEDLINE | ID: mdl-24970463

ABSTRACT

INTRODUCTION: This study investigates the application of texture analysis methods on brain T2-white matter lesions detected with magnetic resonance imaging (MRI) for the prognosis of future disability in subjects diagnosed with clinical isolated syndrome (CIS) of multiple sclerosis (MS). METHODS: Brain lesions and normal appearing white matter (NAWM) from 38 symptomatic untreated subjects diagnosed with CIS as well as normal white matter (NWM) from 20 healthy volunteers, were manually segmented, by an experienced MS neurologist, on transverse T2-weighted images obtained from serial brain MR imaging scans (0 and 6-12 months). Additional clinical information in the form of the Expanded Disability Status Scale (EDSS), a scale from 0 to 10, which provides a way of quantifying disability in MS and monitoring the changes over time in the level of disability, were also provided. Shape and most importantly different texture features including GLCM and laws were then extracted for all above regions, after image intensity normalization. RESULTS: The findings showed that: (i) there were significant differences for the texture futures extracted between the NAWM and lesions at 0 month and between NAWM and lesions at 6-12 months. However, no significant differences were found for all texture features extracted when comparing lesions temporally at 0 and 6-12 months with the exception of contrast (gray level difference statistics-GLDS) and difference entropy (spatial gray level dependence matrix-SGLDM); (ii) significant differences were found between NWM and NAWM for most of the texture features investigated in this study; (iii) there were significant differences found for the lesion texture features at 0 month for those with EDSS≤2 versus those with EDSS>2 (mean, median, inverse difference moment and sum average) and for the lesion texture features at 6-12 months with EDSS>2 and EDSS≤2 for the texture features (mean, median, entropy and sum average). It should be noted that whilst there were no differences in entropy at time 0 between the two groups, significant change was observed at 6-12 months, relating the corresponding features to the follow-up and disability (EDSS) progression. For the NAWM, significant differences were found between 0 month and 6-12 months with EDSS≤2 (contrast, inverse difference moment), for 6-12 months for EDSS>2 and 0 month with EDSS>2 (difference entropy) and for 6-12 months for EDSS>2 and EDSS≤2 (sum average); (iv) there was no significant difference for NAWM and the lesion texture features (for both 0 and 6-12 months) for subjects with no change in EDSS score versus subjects with increased EDSS score from 2 to 5 years. CONCLUSIONS: The findings of this study provide evidence that texture features of T2 MRI brain white matter lesions may have an additional potential role in the clinical evaluation of MRI images in MS and perhaps may provide some prognostic evidence in relation to future disability of patients. However, a larger scale study is needed to establish the application in clinical practice and for computing shape and texture features that may provide information for better and earlier differentiation between normal brain tissue and MS lesions.


Subject(s)
Demyelinating Diseases/pathology , Diffusion Tensor Imaging/methods , Image Interpretation, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Multiple Sclerosis/pathology , White Matter/pathology , Adult , Algorithms , Female , Humans , Image Enhancement/methods , Male , Pattern Recognition, Automated/methods , Reproducibility of Results , Sensitivity and Specificity
3.
Article in English | MEDLINE | ID: mdl-23365830

ABSTRACT

The degree of stenosis of the common carotid artery (CCA) but also the characteristics of the arterial wall including plaque size, composition and elasticity represent important predictors used in the assessment of the risk for future cardiovascular events. This paper proposes and evaluates an integrated system for the segmentation of atherosclerotic carotid plaque in ultrasound video of the CCA based on normalization, speckle reduction filtering (with the hybrid median filter) and parametric active contours. The algorithm is initialized in the first video frame of the cardiac cycle with human assistance and the moving atherosclerotic plaque borders are tracked and segmented in the subsequent frames. The algorithm is evaluated on 10 real CCA digitized videos from B-mode longitudinal ultrasound segments and is compared with the manual segmentations of an expert, for every 20 frames in a time span of 3-5 seconds, covering in general 2 cardiac cycles. The segmentation results are very satisfactory with a true negative fraction (TNF) of 79.3%, a true-positive fraction (TPF) of 78.12%, a false-positive fraction (FPF) of 6.7% and a false-negative fraction (FNF) of 19.6% between the ground truth and the presented plaque segmentations, a Williams index (KI) of 80.3%, an overlap index of 71.5%, a specificity of 0.88±0.09, a precision of 0.86±0.10 and an effectiveness measure of 0.77±0.09. The results show that integrated system investigated in this study could be successfully used for the automated video segmentation of the carotid plaque.


Subject(s)
Carotid Artery Diseases , Carotid Artery, Common , Image Processing, Computer-Assisted/methods , Plaque, Atherosclerotic , Video Recording/methods , Carotid Artery Diseases/diagnostic imaging , Carotid Artery Diseases/physiopathology , Carotid Artery, Common/diagnostic imaging , Carotid Artery, Common/physiopathology , Female , Humans , Male , Plaque, Atherosclerotic/diagnostic imaging , Plaque, Atherosclerotic/physiopathology , Ultrasonography
4.
Conf Proc IEEE Eng Med Biol Soc ; 2005: 6394-8, 2005.
Article in English | MEDLINE | ID: mdl-17281731

ABSTRACT

Intelligent management of medical data is an important field of research in clinical information and decision support systems. Such systems are finding increasing use in the management of patients known to have, or suspected of having, breast cancer. Different types of breast-tissue patterns convey semantic information which is reported by the radiologist when reading mammograms. In this paper, a novel method is presented for the automatic labelling and characterisation of mammographic densities. The presented method is first concerned with the identification of the prominent structures in each mammogram. Subsequently, "dense tissue" is labelled in a mammogram data set, and BI-RADS classification is performed based on a 2D pdf that is contracted from a "ground truth" data set as well as a shape analysis framework. The presented method can be used in large-scale epidemiological studies which involve mammographic measurements of tissue-pattern, especially since breast-tissue density has been linked to an increased risk of breast cancer.

SELECTION OF CITATIONS
SEARCH DETAIL
...