Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
2.
Bioorg Med Chem Lett ; 18(6): 2097-102, 2008 Mar 15.
Article in English | MEDLINE | ID: mdl-18289848

ABSTRACT

A series of 3,4,6-substituted 2-quinolones has been synthesized and evaluated as inhibitors of the kinase domain of macrophage colony-stimulating factor-1 receptor (FMS). The fully optimized compound, 4-(4-ethyl-phenyl)-3-(2-methyl-3H-imidazol-4-yl)-2-quinolone-6-carbonitrile 21b, has an IC(50) of 2.5 nM in an in vitro assay and 5.0 nM in a bone marrow-derived macrophage cellular assay. Inhibition of FMS signaling in vivo was also demonstrated in a mouse pharmacodynamic model.


Subject(s)
Macrophages/drug effects , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Quinolones/chemical synthesis , Quinolones/pharmacology , Receptor, Macrophage Colony-Stimulating Factor/antagonists & inhibitors , Administration, Oral , Animals , Biological Availability , Cell Proliferation/drug effects , Fluorescence Polarization , Genes, fos/genetics , Macrophage Colony-Stimulating Factor/metabolism , Mice , Mice, Inbred C57BL , Molecular Structure , Quinolones/pharmacokinetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Receptor, Macrophage Colony-Stimulating Factor/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Spleen/metabolism , Structure-Activity Relationship
3.
Bioorg Med Chem Lett ; 17(22): 6070-4, 2007 Nov 15.
Article in English | MEDLINE | ID: mdl-17904845

ABSTRACT

A series of 2'-aminoanilides have been identified which exhibit potent and selective inhibitory activity against the cFMS tyrosine kinase. Initial SAR studies within this series are described which examine aroyl and amino group substitutions, as well as the introduction of hydrophilic substituents on the benzene core. Compound 47 inhibits the isolated enzyme (IC(50)=0.027 microM) and blocks CSF-1-induced proliferation of bone marrow-derived macrophages (IC(50)=0.11 microM) and as such, serves as a lead candidate for further optimization studies.


Subject(s)
Anilides/chemical synthesis , Anilides/pharmacology , Anti-Inflammatory Agents/pharmacology , Piperidines/chemistry , Protein Kinase Inhibitors/pharmacology , Receptor, Macrophage Colony-Stimulating Factor/antagonists & inhibitors , Anilides/chemistry , Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/chemistry , Cell Line , Cell Proliferation/drug effects , Drug Evaluation, Preclinical , Humans , Inhibitory Concentration 50 , Macrophages/drug effects , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship
4.
J Biol Chem ; 282(6): 4094-101, 2007 Feb 09.
Article in English | MEDLINE | ID: mdl-17132624

ABSTRACT

The cFMS proto-oncogene encodes for the colony-stimulating factor-1 receptor, a receptor-tyrosine kinase responsible for the differentiation and maturation of certain macrophages. Upon binding its ligand colony-stimulating factor-1 cFMS autophosphorylates, dimerizes, and induces phosphorylation of downstream targets. We report the novel crystal structure of unphosphorylated cFMS in complex with two members of different classes of drug-like protein kinase inhibitors. cFMS exhibits a typical bi-lobal kinase fold, and its activation loop and DFG motif are found to be in the canonical inactive conformation. Both ATP competitive inhibitors are bound in the active site and demonstrate a binding mode similar to that of STI-571 bound to cABL. The DFG motif is prevented from switching into the catalytically competent conformation through interactions with the inhibitors. Activation of cFMS is also inhibited by the juxtamembrane domain, which interacts with residues of the active site and prevents formation of the activated kinase. Together the structures of cFMS provide further insight into the autoinhibition of receptor-tyrosine kinases via their respective juxtamembrane domains; additionally the binding mode of two novel classes of kinase inhibitors will guide the design of novel molecules targeting macrophage-related diseases.


Subject(s)
Protein Kinase Inhibitors/chemistry , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Receptor Protein-Tyrosine Kinases/chemistry , Receptor, Macrophage Colony-Stimulating Factor/antagonists & inhibitors , Receptor, Macrophage Colony-Stimulating Factor/chemistry , Amides/chemistry , Amino Acid Sequence , Binding Sites , Crystallography, X-Ray , Humans , Molecular Sequence Data , Mutant Chimeric Proteins/antagonists & inhibitors , Mutant Chimeric Proteins/chemistry , Protein Structure, Tertiary/genetics , Proto-Oncogene Mas , Quinolones/chemistry , Receptor Protein-Tyrosine Kinases/genetics , Receptor Protein-Tyrosine Kinases/metabolism , Receptor, Macrophage Colony-Stimulating Factor/genetics , Receptor, Macrophage Colony-Stimulating Factor/metabolism , Receptor, TIE-2/chemistry , Receptor, TIE-2/genetics , Receptors, Fibroblast Growth Factor/chemistry , Receptors, Fibroblast Growth Factor/genetics
5.
J Biol Chem ; 282(6): 4085-93, 2007 Feb 09.
Article in English | MEDLINE | ID: mdl-17132625

ABSTRACT

A parallel approach to designing crystallization constructs for the c-FMS kinase domain was implemented, resulting in proteins suitable for structural studies. Sequence alignment and limited proteolysis were used to identify and eliminate unstructured and surface-exposed domains. A small library of chimeras was prepared in which the kinase insert domain of FMS was replaced with the kinase insert domain of previously crystallized receptor-tyrosine kinases. Characterization of the newly generated FMS constructs by enzymology and thermoshift assays demonstrated similar activities and compound binding to the FMS full-length cytoplasmic domain. Two chimeras were evaluated for crystallization in the presence and absence of a variety of ligands resulting in crystal structures, and leading to a successful structure-based drug design project for this important inflammation target.


Subject(s)
Protein Engineering , Receptor Protein-Tyrosine Kinases/chemical synthesis , Receptor Protein-Tyrosine Kinases/genetics , Receptor, Macrophage Colony-Stimulating Factor/chemistry , Receptor, Macrophage Colony-Stimulating Factor/genetics , Amino Acid Sequence , Animals , Cells, Cultured , Crystallization , Cytoplasm/chemistry , Cytoplasm/genetics , Humans , Molecular Sequence Data , Mutant Chimeric Proteins/chemical synthesis , Mutant Chimeric Proteins/genetics , Protein Kinase Inhibitors/chemistry , Protein Structure, Tertiary/genetics , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Receptor, Macrophage Colony-Stimulating Factor/antagonists & inhibitors , Sequence Alignment , Spodoptera
6.
Bioorg Med Chem Lett ; 16(22): 5778-83, 2006 Nov 15.
Article in English | MEDLINE | ID: mdl-16949284

ABSTRACT

A new class of Aurora-A inhibitors have been identified based on the 2-amino-pyrrolo[2,3-d]pyrimidine scaffold. Here, we describe the synthesis and SAR of this novel series. We report compounds which exhibit nanomolar activity in the Aurora-A biochemical assay and are able to inhibit tumor cell proliferation. This study culminates in compound 30, an inhibitor with potent activity against Aurora A (IC50=0.008 microM), anti-proliferative activity against several tumor cell lines and induces polyploidy in H460 cells.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Pyrimidines/chemical synthesis , Pyrimidines/pharmacology , Pyrroles/chemical synthesis , Pyrroles/pharmacology , Aurora Kinases , Cell Line, Tumor , Drug Screening Assays, Antitumor , Humans , Inhibitory Concentration 50 , Polyploidy , Structure-Activity Relationship
7.
J Med Chem ; 48(6): 1717-20, 2005 Mar 24.
Article in English | MEDLINE | ID: mdl-15771417

ABSTRACT

2-Hydroxy-4,6-diamino-[1,3,5]triazines are described which are a novel class of potent inhibitors of the VEGF-R2 (flk-1/KDR) tyrosine kinase. 4-(Benzothiazol-6-ylamino)-6-(benzyl-isopropyl-amino)-[1,3,5]triazin-2-ol (14d) exhibited low nanomolar potency in the in vitro enzyme inhibition assay (IC(50) = 18 nM) and submicromolar inhibitory activity in a KDR-induced MAP kinase autophosphorylation assay in HUVEC cells (IC(50) = 280 nM), and also demonstrated good in vitro selectivity against a panel of growth factor receptor tyrosine kinases. Further, 14d showed antiangiogenic activity in an aortic ring explant assay by blocking endothelial outgrowths in rat aortas with an IC(50) of 1 microM.


Subject(s)
Angiogenesis Inhibitors/chemical synthesis , Thiazoles/chemical synthesis , Triazines/chemical synthesis , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Vascular Endothelial Growth Factor Receptor-2/chemistry , Angiogenesis Inhibitors/chemistry , Angiogenesis Inhibitors/pharmacology , Animals , Aorta/drug effects , Aorta/physiology , Benzothiazoles , Capillaries/drug effects , Capillaries/physiology , Cell Line , Combinatorial Chemistry Techniques , Endothelium, Vascular/drug effects , Endothelium, Vascular/physiology , Humans , Organ Culture Techniques , Phosphorylation , Rats , Structure-Activity Relationship , Thiazoles/chemistry , Thiazoles/pharmacology , Triazines/chemistry , Triazines/pharmacology , Umbilical Veins/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...