Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 13252, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858396

ABSTRACT

The paper presents the first experimental observation of an atypical phenomena during self-organization of dust particles into a one-dimensional chain structure levitated vertically in the plasma of a DC glow discharge. Using a laser, the third (middle) dust particle was removed from the chain of five particles so that the positions of the remaining particles did not significantly change, and a vacancy occurred in the place of the removed particle. This state of the chain turned out to be very stable, which is confirmed by the observation of the subsequent exchange of places of the fourth and the fifth particles of the chain upon the action of the laser on the forth particle. After the exchange process, vertical positions of all particles (first, second, fourth and fifth) in the chain remained almost the same as before the exchange, and the vacancy at the position of the third particle was preserved. The experimental data and the video record of the observed phenomena as well as the estimates of the plasma parameters are presented. An assumption has been made about the mechanism of the discovered phenomena that at present discharge conditions both the vacancy formation and the dust particles positions exchange are possible due to a strong ion wakes which are formed behind the upstream dust particles of the chain.

2.
Phys Rev E ; 106(2-2): 025204, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36110018

ABSTRACT

This paper presents a numerical study of the structural parameters of a one-dimensional chain of three dust particles levitating in the near-electrode layer of an rf discharge or in the stratum of a dc discharge. The model considers the motion of dust particles under the action of gravity, external electric field, the Coulomb repulsion, and the electrostatic force from the space charge surrounding the dust particles. Particular attention is paid to the effect of plasma polarization around dust particles and the wake formation under the action of the external electric field. Calculations showed that the charge of the first dust particle in the chain and the total charge of the entire chain, as well as the length of the chain, grow linearly with the external electric field strength. Obtained data are in qualitative agreement with the experimental and numerical data presented in the literature. It was shown that for a certain large value of the external electric field, the charge of the third dust particle is the smallest of all the particles in the chain. It was found that with an increase in the mean value of the external electric field, the chain of dust particles is displaced as a whole in the direction opposite to the action of the electrostatic force on them.

3.
Phys Chem Chem Phys ; 24(23): 14150-14158, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35648110

ABSTRACT

Overdamped active Brownian motion of self-propelled particles in a liquid has been fairly well studied. However, there are a variety of situations in which the overdamped approximation is not justified, for instance, when self-propelled particles move in a low-viscosity medium or when their rotational diffusivity is enhanced by internal active processes or external control. Examples of various origins include biofilaments driven by molecular motors, living and artificial microflyers and interfacial surfers, field-controlled and superfluid microswimmers, vibration-driven granular particles and autonomous mini-robots with sensorial delays, etc. All of them extend active Brownian motion to the underdamped case, i.e., to active Langevin motion, which takes into account inertia. Despite a rich experimental background, there is a gap in the theory in the field where rotational inertia significantly affects the random walk of active particles on all time scales. In particular, although the well-known models of active Brownian and Ornstein-Uhlenbeck particles include a memory effect of the direction of motion, they are not applicable in the underdamped case, because the rotational inertia, which they do not account for, can partially prevent "memory loss" with increasing rotational diffusion. We describe the two-dimensional motion of a self-propelled particle with both translational and rotational inertia and velocity fluctuations. The proposed generalized analytical equations for the mean kinetic energy, mean-square displacement and noise-averaged trajectory of the self-propelled particle are confirmed by numerical simulations in a wide range of self-propulsion velocities, moments of inertia, rotational diffusivities, medium viscosities and observation times.

4.
Sci Rep ; 12(1): 614, 2022 01 12.
Article in English | MEDLINE | ID: mdl-35022453

ABSTRACT

Bacterial motility provides the ability for bacterial dissemination and surface exploration, apart from a choice between surface colonisation and further motion. In this study, we characterised the movement trajectories of pathogenic and probiotic Escherichia coli strains (ATCC43890 and M17, respectively) at the landing stage (i.e., leaving the bulk and approaching the surface) and its correlation with adhesion patterns and efficiency. A poorly motile strain JM109 was used as a control. Using specially designed and manufactured microfluidic chambers, we found that the motion behaviour near surfaces drastically varied between the strains, correlating with adhesion patterns. We consider two bacterial strategies for effective surface colonisation: horizontal and vertical, based on the obtained results. The horizontal strategy demonstrated by the M17 strain is characterised by collective directed movements within the horizontal layer during a relatively long period and non-uniform adhesion patterns, suggesting co-dependence of bacteria in the course of adhesion. The vertical strategy demonstrated by the pathogenic ATCC43890 strain implies the individual movement of bacteria mainly in the vertical direction, a faster transition from bulk to near-surface swimming, and independent bacterial behaviour during adhesion, providing a uniform distribution over the surface.


Subject(s)
Bacterial Adhesion , Escherichia coli/physiology , Movement , Escherichia coli/pathogenicity , Probiotics , Species Specificity , Virulence
5.
Phys Rev E ; 103(6-1): 063212, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34271636

ABSTRACT

Microparticle suspensions in a polarity-switched discharge plasma of the Plasmakristall-4 facility on board the International Space Station exhibit string-like order. As pointed out in [Phys. Rev. Research 2, 033314 (2020)2643-156410.1103/PhysRevResearch.2.033314], the string-order is subject to evolution on the timescale of minutes at constant gas pressure and constant parameters of polarity switching. We perform a detailed analysis of this evolution using the pair correlations and length spectrum of the string-like clusters (SLCs). Average exponential decay rate of the SLC length spectrum is used as a measure of string order. The analysis shows that the improvement of the string-like order is accompanied by the decrease of the thickness of the microparticle suspension, microparticle number density, and total amount of microparticles in the field of view. This suggests that the observed long-term evolution of the string-like order is caused by the redistribution of the microparticles, which significantly modifies the plasma conditions.

6.
Phys Chem Chem Phys ; 23(30): 16248-16257, 2021 Aug 04.
Article in English | MEDLINE | ID: mdl-34308937

ABSTRACT

Self-propelled colloids, active polymers and membranes, driven (vibrated) granular layers and hybrid synthetic-biological systems are striking examples of systems containing synthetic active Brownian particles. Such particles autonomously convert the available energy of the environment into their own directed mechanical motion. In most studies the self-propelled Brownian particles move in overdamped media. Recently, experiments with Janus particles in a low-pressure plasma have appeared. A distinctive feature of such a medium is an extremely low viscosity at which the inertial effects play a significant role, resulting in underdamped Brownian motion. At present, there is a lack of statistical theory describing the underdamped Brownian motion of self-propelled particles at all time scales. This paper presents the numerical simulation results of active Brownian motion in homogeneous media of different viscosities. The calculations are performed using a mathematical model of a self-propelled Brownian sphere with translational and rotational inertia. The time-dependent mean square displacement and mean linear displacement (the noise-averaged trajectory) of the particle are investigated as a function of medium viscosity, self-propulsion velocity and moment of inertia. Our simulation reveals that the dynamics of a self-propelled spherical particle significantly depends on two independent dimensionless parameters of the particle: the ratio of the self-propulsion velocity to the characteristic thermal velocity and the ratio of the friction coefficient to the rotational diffusion coefficient. The obtained statistical characteristics of active Brownian motion are compared with the known theoretical models in a wide range of medium viscosities. We propose simple corrections to the basic theory of overdamped active Brownian motion, which allow one to calculate the effective diffusion coefficient and the persistence length of a self-propelled Brownian particle in a medium with any dynamic viscosity. The results obtained are discussed in relation to active particles in a colloidal plasma and superfluid helium.

7.
Sci Rep ; 11(1): 523, 2021 Jan 12.
Article in English | MEDLINE | ID: mdl-33436865

ABSTRACT

We present a detailed analysis of experimental study, which shows clear evidence of a two-stage melting process of a quasi-two-dimensional dusty plasma system in a high-frequency gas discharge. We accurately calculated global parameters of the orientational and translational order, as well as their susceptibilities to determine two critical points, related to "solid-to-hexatic" and "hexatic-to-liquid" phase transitions. The nature of the emerging defects and changes in their mutual concentration, in addition to the estimate of core energy of free dislocations also counts in favor of the formation of an intermediate hexatic phase. These results are fully consistent with the Berezinsky-Kosterlitz-Thouless theory.

8.
Sci Rep ; 10(1): 13653, 2020 Aug 12.
Article in English | MEDLINE | ID: mdl-32788600

ABSTRACT

There is a variety of cases in nature when the action-reaction symmetry is broken. In particular, suitable conditions for this are realized in colloidal suspensions and complex plasmas. Since the first theories and simulations of the nonreciprocal effective interactions between microparticles in complex plasmas were published in 1995-1996, there have been hundreds of studies in the theoretical development of this theme. However, despite such a rich theoretical background, one of the important unsolved problems is a direct experimental determination of the nonreciprocal interparticle interaction forces. Here, we studied experimentally in detail the forces of the nonreciprocal effective interaction between microparticles suspended a radio-frequency produced plasma sheath. For this purpose, an experimental method based on an analysis of the spectral density of random processes in an open dissipative two-particle system was developed. In contrast to previous investigations, the proposed method takes into account random and dissipative processes in the system, does not require a special design of the experimental setup and any external perturbations, pre-measurements of external fields and any assumptions about the type of interaction. We found that even small charge changes of one particle, caused by its thermal motion in a wake field of another particle, can lead to a significant change in the effective (measurable) interaction between the particles.

9.
Phys Rev E ; 100(6-1): 063202, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31962420

ABSTRACT

The breaking of a plane self-excited dust-acoustic soliton in a dust cloud formed in stratified dc glow discharge plasma is studied. Both macroscopic and kinetic parameters of the dust component near the soliton are experimentally obtained. It is shown that the breaking of a soliton can accelerate charged particles to supersonic speeds. The theoretical interpretation of the experimental results is performed in the framework of the hydrodynamic plasma approach, as well as the single-particle approximation. Both dissipative and nondissipative cases are considered.

10.
Phys Rev E ; 95(6-1): 063207, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28709289

ABSTRACT

A self-consistent model of plasma polarization around an isolated micron-sized dust particle under the action of an external electric field is presented. It is shown that the quasineutral condition is fulfilled and the formed volume charge totally screens the dust particle. The ion focusing and wake formation behind the dust particle are demonstrated for different ion mean free paths and the external electric fields. It is obtained that at low values of the external electric field the trapped ions play the main role in the screening of the dust particle charge. For high external electric fields, the density of trapped ions decreases and the dust particle is screened mainly by the free ions.

11.
Phys Rev E ; 95(1-1): 013202, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28208460

ABSTRACT

The liquid-crystal type of phase transition in complex plasmas has been observed repeatedly. However, more studies need to be done on the liquid-vapor transition in complex plasmas. In this paper, the phenomenon of coupling (condensation) of particles into self-confined particle pairs in an anisotropic plasma medium with ion flow is considered analytically and numerically using the Langevin molecular dynamics method. We obtain the stability conditions of the pair (bound) state depending on the interaction parameters and particle kinetic energy. It was shown that the breakup of the particle pair is very sensitive to the ratio of particle charges; for example, it is determined by the influence of the upper particle on the ion flow around the lower one. We also show that a self-confined pair of particles exists even if their total kinetic energy is much greater than the potential well depth for the pair state. This phenomenon occurs due to velocity correlation of particles, which arises with the nonreciprocity of interparticle interaction.

12.
Rev Sci Instrum ; 87(9): 093505, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27782568

ABSTRACT

New complex-plasma facility, Plasmakristall-4 (PK-4), has been recently commissioned on board the International Space Station. In complex plasmas, the subsystem of µm-sized microparticles immersed in low-pressure weakly ionized gas-discharge plasmas becomes strongly coupled due to the high (103-104 e) electric charge on the microparticle surface. The microparticle subsystem of complex plasmas is available for the observation at the kinetic level, which makes complex plasmas appropriate for particle-resolved modeling of classical condensed matter phenomena. The main purpose of PK-4 is the investigation of flowing complex plasmas. To generate plasma, PK-4 makes use of a classical dc discharge in a glass tube, whose polarity can be switched with the frequency of the order of 100 Hz. This frequency is high enough not to be felt by the relatively heavy microparticles. The duty cycle of the polarity switching can be also varied allowing to vary the drift velocity of the microparticles and (when necessary) to trap them. The facility is equipped with two videocameras and illumination laser for the microparticle imaging, kaleidoscopic plasma glow observation system and minispectrometer for plasma diagnostics and various microparticle manipulation devices (e.g., powerful manipulation laser). Scientific experiments are programmed in the form of scripts written with the help of specially developed C scripting language libraries. PK-4 is mainly operated from the ground (control center CADMOS in Toulouse, France) with the support of the space station crew. Data recorded during the experiments are later on delivered to the ground on the removable hard disk drives and distributed to participating scientists for the detailed analysis.

13.
J Appl Microbiol ; 116(5): 1129-36, 2014 May.
Article in English | MEDLINE | ID: mdl-24517235

ABSTRACT

AIM: To study the effects exerted by argon microwave nonthermal plasma (NTP) on cell wall-lacking Mollicutes bacteria. METHODS AND RESULTS: 10(8) CFU ml(-1) agar plated Mycoplasma hominis and Acholeplasma laidlawii were treated with the nonthermal microwave argon plasma for 30-300 s. The maximal 10- and 100-fold drop was observed for A. laidlawii and Myc. hominis, respectively. Similarly treated Escherichia coli and Staphylococcus aureus demonstrated the 10(5) and 10(3) drop, respectively. Removal of cholesterol affected resistance of A. laidlawii. 10 mmol l(-1) antioxidant butylated hydroxytoluene decreased mortality by a factor of 25-200. UV radiation alone caused 25-85% mortality in comparison with the whole NTP. Exogenously added hydrogen peroxide H2O2 did not cause mortality. NTP treatment of Myc. hominis triggered growth of microcolonies, which were several tenfold smaller than a typical colony. CONCLUSIONS: Despite the lack of cell wall, A. laidlawii and Myc. hominis were more resistant to argon microwave NTP than other tested bacteria. Mycoplasma hominis formed microcolonies upon NTP treatment. A role of UV and active species was demonstrated. SIGNIFICANCE AND IMPACT OF THE STUDY: The first study of NTP effects on Mollicutes revealed importance of a membrane composition for bacterial resistance to NTP. New specific Myc. hominis morphological forms were observed. The study confirmed importance of the concerted action of reactive oxygen species (ROS) with UV and other plasma bioactive agents for NTP bactericidal action.


Subject(s)
Acholeplasma laidlawii/drug effects , Anti-Bacterial Agents/pharmacology , Mycoplasma hominis/drug effects , Plasma Gases/pharmacology , Argon , Cholesterol/physiology , Microbial Viability/drug effects , Microwaves , Mycoplasma hominis/growth & development , Mycoplasma hominis/ultrastructure , Oxidants/pharmacology , Ultraviolet Rays
14.
Article in English | MEDLINE | ID: mdl-23848791

ABSTRACT

We describe a series of experiments on dust particles' flows in a positive column of a horizontal dc discharge operating in laboratory and microgravity conditions. The main observation is that the particle flow velocities in laboratory experiments are systematically higher than in microgravity experiments for otherwise identical discharge conditions. The paper provides an explanation for this interesting and unexpected observation. The explanation is based on a physical model, which properly takes into account main plasma-particle interaction mechanisms relevant to the described experimental study. A comparison of experimentally measured particle velocities and those calculated using the proposed model demonstrates reasonable agreement, both in laboratory and microgravity conditions, in the entire range of discharge parameters investigated.

15.
Article in English | MEDLINE | ID: mdl-23410440

ABSTRACT

A self-consistent nonlocal model of the positive column of a dc glow discharge with dust particles is presented. Radial distributions of plasma parameters and the dust component in an axially homogeneous glow discharge are considered. The model is based on the solution of a nonlocal Boltzmann equation for the electron energy distribution function, drift-diffusion equations for ions, and the Poisson equation for a self-consistent electric field. The radial distribution of dust particle density in a dust cloud was fixed as a given steplike function or was chosen according to an equilibrium Boltzmann distribution. The balance of electron and ion production in argon ionization by an electron impact and their losses on the dust particle surface and on the discharge tube walls is taken into account. The interrelation of discharge plasma and the dust cloud is studied in a self-consistent way, and the radial distributions of the discharge plasma and dust particle parameters are obtained. It is shown that the influence of the dust cloud on the discharge plasma has a nonlocal behavior, e.g., density and charge distributions in the dust cloud substantially depend on the plasma parameters outside the dust cloud. As a result of a self-consistent evolution of plasma parameters to equilibrium steady-state conditions, ionization and recombination rates become equal to each other, electron and ion radial fluxes become equal to zero, and the radial component of electric field is expelled from the dust cloud.


Subject(s)
Algorithms , Models, Chemical , Plasma Gases/chemistry , Rheology/methods , Computer Simulation , Electromagnetic Fields , Plasma Gases/radiation effects
16.
Acta Naturae ; 4(3): 82-7, 2012 Jul.
Article in English | MEDLINE | ID: mdl-23150806

ABSTRACT

Non-thermal plasma (NTP) consists of a huge amount of biologically active particles, whereas its temperature is close to ambient. This combination allows one to use NTP as a perspective tool for solving different biomedical tasks, including antitumor therapy. The treatment of tumor cells with NTP caused dose-dependent effects, such as growth arrest and apoptosis. However, while the outcome of NTP treatment has been established, the molecular mechanisms of the interaction between NTP and eukaryotic cells have not been thoroughly studied thus far. In this work, the mechanisms and the type of death of human colon carcinoma HCT 116 cells upon application of non-thermal argon plasma were studied. The effect of NTP on the major stress-activated protein p53 was investigated. The results demonstrate that the viability of HCT116 cells upon plasma treatment is dependent on the functional p53 protein. NTP treatment caused an increase in the intracellular concentration of p53 and the induction of the p53-controlled regulon. The p53-dependent accumulation of active proapoptotic caspase-3 was shown in NTP-treated cells. The study was the first to demonstrate that treatment of human colon carcinoma cells with NTP results in p53-dependent apoptosis. The results obtained contribute to our understanding of the applicability of NTP in antitumor therapy.

17.
Phys Rev E Stat Nonlin Soft Matter Phys ; 86(3 Pt 2): 036404, 2012 Sep.
Article in English | MEDLINE | ID: mdl-23031031

ABSTRACT

We have performed experimental and theoretical investigation of the formation and behavior of Coulomb clusters of charged diamagnetic particles in a cusp magnetic trap under microgravity conditions aboard the International Space Station. Graphite particles of 100-400 µm in size were used in experiments due to the highest specific magnetic susceptibility. We have observed the formation of clusters in the shape of an oblate ellipsoid of revolution and their oscillations after dynamical action by changing the magnetic field. Observing the excitation and damping of oscillations we have made some estimations. Molecular dynamics simulations of the observed processes have been made. Their results are in reasonable agreement with experiments. Some differences are evidently due to some unaccounted-for reasons.


Subject(s)
Dust , Models, Chemical , Plasma Gases/chemistry , Static Electricity , Weightlessness , Computer Simulation , Particle Size
18.
Article in Russian | MEDLINE | ID: mdl-22937702

ABSTRACT

AIM: Study microbicidal activity of low temperature argon plasma (LTP) that is a stream of partially ionized argon having macroscopic temperature of the environment against Chlamydia trachomatis obligate intracellular parasites. Study viability of host cells in parallel. MATERIALS AND METHODS: McCoy line cells infected with C. trachomatis (Bu-434/L2 strain) were exposed to LTP obtained by using atmospheric pressure plasma SHF generator. Intracellular localization of chlamydiae was visualized by luminescent microscopy. RESULTS: Exposure of infected McCoy line cells resulted in the destruction of chlamydia inclusions and practically complete elimination of intracellular bacteria. At the same time LTP exposure did not result in immediate death of host cells, an insignificant reduction of the number of cells was observed 24 hours after the exposure to LTP. CONCLUSION: The effect of LTP for elimination of intracellular chlamydia without significant changes in viability of eukaryotic host cells was demonstrated.


Subject(s)
Chlamydia trachomatis/growth & development , Plasma Gases , Argon/chemistry , Cell Count , Cell Line , Cell Survival , Chlamydia Infections/microbiology , Humans , Microbial Viability , Microscopy, Fluorescence , Species Specificity , Temperature
19.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(6 Pt 2): 066407, 2012 Jun.
Article in English | MEDLINE | ID: mdl-23005228

ABSTRACT

Phase behavior of large three-dimensional (3D) complex plasma systems under microgravity conditions onboard the International Space Station is investigated. The neutral gas pressure is used as a control parameter to trigger phase changes. Detailed analysis of structural properties and evaluation of three different melting-freezing indicators reveal that complex plasmas can exhibit melting by increasing the gas pressure. Theoretical estimates of complex plasma parameters allow us to identify main factors responsible for the observed behavior. The location of phase states of the investigated systems on a relevant equilibrium phase diagram is estimated. Important differences between the melting process of 3D complex plasmas under microgravity conditions and that of flat 2D complex plasma crystals in ground based experiments are discussed.


Subject(s)
Models, Chemical , Plasma Gases/chemistry , Rheology/methods , Weightlessness , Computer Simulation , Phase Transition
20.
Phys Rev Lett ; 109(5): 055002, 2012 Aug 03.
Article in English | MEDLINE | ID: mdl-23006182

ABSTRACT

An experimental study of the kinematic viscosity has been carried out for dust particles of size 0.95 and 3.92 µm, in weakly ionized plasma over a wide range of dust coupling parameters. Measurements of viscosity for weakly correlated dusty-plasma systems are presented for the first time. An approximation for the estimation of viscosity constants is proposed. The measured viscosity constants are compared with theoretical estimates and numerical data.


Subject(s)
Dust , Models, Chemical , Plasma Gases/chemistry , Viscosity
SELECTION OF CITATIONS
SEARCH DETAIL
...