Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 14(2)2022 Jan 12.
Article in English | MEDLINE | ID: mdl-35054702

ABSTRACT

More than 60,000 firefighters' injuries were reported by the National Fire Protection Association in the U.S. in 2019. Inadequate protection by bunker gear could be a reason for most of the injuries. Firefighters repeatedly encounter thermal hazards due to their job responsibilities. Degradation could occur on bunker gear fabric during thermal exposure. It has been found that the presence of moisture affects performance as well, which may come from wearers' sweat. Proper evaluation of the tensile strength of the fabrics used in bunker gear could provide information essential for maintenance the overall integrity of the gear. An evaluation of the tensile strength of fabrics when exposed to 10, 15, and 20 kW/m2 radiant heat flux in the presence of moisture is reported. In each fabric system, a total of sixty-four different samples were prepared for four different types of fabric and four levels of moisture which were exposed to three different radiant heat flux for five minutes. Heat flux and moisture levels have significant impact on tensile strength. The effect of moisture on tensile strength in a three-layered fabric system is higher than that for a single layer fabric. An understanding of the impact of heat and moisture on fabric strength has been achieved.

2.
Gait Posture ; 39(1): 430-5, 2014.
Article in English | MEDLINE | ID: mdl-24021525

ABSTRACT

This study investigated the impact of weight and weight distribution of body armor and load carriage on static body balance and leg muscle function. A series of human performance tests were conducted with seven male, healthy, right-handed military students in seven garment conditions with varying weight and weight distributions. Static body balance was assessed by analyzing the trajectory of center of plantar pressure and symmetry of weight bearing in the feet. Leg muscle functions were assessed by analyzing the peak electromyography amplitude of four selected leg muscles during walking. Results of this study showed that uneven weight distribution of garment and load beyond an additional 9 kg impaired static body balance as evidenced by increased sway of center of plantar pressure and asymmetry of weight bearing in the feet. Added weight on non-dominant side of the body created greater impediment to static balance. Increased garment weight also elevated peak EMG amplitude in the rectus femoris to maintain body balance and in the medial gastrocnemius to increase propulsive force. Negative impacts on balance and leg muscle function with increased carrying loads, particularly with an uneven weight distribution, should be stressed to soldiers, designers, and sports enthusiasts.


Subject(s)
Gait/physiology , Military Personnel , Postural Balance/physiology , Protective Clothing , Quadriceps Muscle/physiology , Weight-Bearing/physiology , Biomechanical Phenomena , Electromyography , Humans , Leg/physiology , Male , Muscle, Skeletal/physiology , Pressure , Young Adult
3.
Ergonomics ; 56(7): 1167-79, 2013.
Article in English | MEDLINE | ID: mdl-23656166

ABSTRACT

This study investigated the impact of weight magnitude and distribution of body armour and carrying loads on military personnel's walking patterns and comfort perceptions. Spatio-temporal parameters of walking, plantar pressure and contact area were measured while seven healthy male right-handed military students wore seven different garments of varying weight (0.06, 9, 18 and 27 kg) and load distribution (balanced and unbalanced, on the front and back torso). Higher weight increased the foot contact time with the floor. In particular, weight placement on the non-dominant side of the front torso resulted in the greatest stance phase and double support. Increased plantar pressure and contact area observed during heavier loads entail increased impact forces, which can cause overuse injuries and foot blisters. Participants reported increasingly disagreeable pressure and strain in the shoulder, neck and lower back during heavier weight conditions and unnatural walking while wearing unbalanced weight distributed loads. This study shows the potentially synergistic impact of wearing body armour vest with differential loads on body movement and comfort perception. PRACTITIONER SUMMARY: This study found that soldiers should balance loads, avoiding load placement on the non-dominant side front torso, thus minimising mobility restriction and potential injury risk. Implications for armour vest design modifications can also be found in the results.


Subject(s)
Military Personnel , Protective Clothing , Walking/physiology , Weight-Bearing/physiology , Adult , Biomechanical Phenomena , Foot/physiology , Gait/physiology , Humans , Lifting , Male , Pressure , United States , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...