Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Lancet Planet Health ; 5(7): e446-e454, 2021 07.
Article in English | MEDLINE | ID: mdl-34245715

ABSTRACT

BACKGROUND: Europe has emerged as a major climate change hotspot, both in terms of an increase in seasonal averages and climate extremes. Projections of temperature-attributable mortality, however, have not been comprehensively reported for an extensive part of the continent. Therefore, we aim to estimate the future effect of climate change on temperature-attributable mortality across Europe. METHODS: We did a time series analysis study. We derived temperature-mortality associations by collecting daily temperature and all-cause mortality records of both urban and rural areas for the observational period between 1998 and 2012 from 147 regions in 16 European countries. We estimated the location-specific temperature-mortality relationships by using standard time series quasi-Poisson regression in conjunction with a distributed lag non-linear model. These associations were used to transform the daily temperature simulations from the climate models in the historical period (1971-2005) and scenario period (2006-2099) into projections of temperature-attributable mortality. We combined the resulting risk functions with daily time series of future temperatures simulated by four climate models (ie, GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR, and MIROC5) under three greenhouse gas emission scenarios (ie, Representative Concentration Pathway [RCP]2.6, RCP6.0, and RCP8.5), providing projections of future mortality attributable fraction due to moderate and extreme cold and heat temperatures. FINDINGS: Overall, 7·17% (95% CI 5·81-8·50) of deaths registered in the observational period were attributed to non-optimal temperatures, cold being more harmful than heat by a factor of ten (6·51% [95% CI 5·14-7·80] vs 0·65% [0·40-0·89]), and with large regional differences across countries-eg, ranging from 4·85% (95% CI 3·75-6·00) in Germany to 9·87% (8·53-11·19) in Italy. The projection of temperature anomalies by RCP scenario depicts a progressive increase in temperatures, more exacerbated in the high-emission scenario RCP8.5 (4·54°C by 2070-2099) than in RCP6.0 (2·89°C) and RCP2.6 (1·67°C). This increase in temperatures was transformed into attributable fraction. Projections consistently indicated that the increase in heat attributable fraction will start to exceed the reduction of cold attributable fraction in the second half of the 21st century, especially in the Mediterranean and in the higher emission scenarios. The comparison between scenarios highlighted the important role of mitigation, given that the total attributable fraction will only remain stable in RCP2.6, whereas the total attributable fraction will rapidly start to increase in RCP6.0 by the end of the century and in RCP8.5 already by the middle of the century. INTERPRETATION: The increase in heat attributable fraction will start to exceed the reduction of cold attributable fraction in the second half of the 21st century. This finding highlights the importance of implementing mitigation policies. These measures would be especially beneficial in the Mediterranean, where the high vulnerability to heat will lead to an imbalance between the decreasing cold and increasing heat-attributable mortality. FUNDING: None.


Subject(s)
Climate Change , Hot Temperature , Cold Temperature , Europe/epidemiology , Temperature
3.
Lancet Planet Health ; 1(4): e142-e151, 2017 07.
Article in English | MEDLINE | ID: mdl-29851600

ABSTRACT

BACKGROUND: El Niño and its effect on local meteorological conditions potentially influences interannual variability in dengue transmission in southern coastal Ecuador. El Oro province is a key dengue surveillance site, due to the high burden of dengue, seasonal transmission, co-circulation of all four dengue serotypes, and the recent introduction of chikungunya and Zika. In this study, we used climate forecasts to predict the evolution of the 2016 dengue season in the city of Machala, following one of the strongest El Niño events on record. METHODS: We incorporated precipitation, minimum temperature, and Niño3·4 index forecasts in a Bayesian hierarchical mixed model to predict dengue incidence. The model was initiated on Jan 1, 2016, producing monthly dengue forecasts until November, 2016. We accounted for misreporting of dengue due to the introduction of chikungunya in 2015, by using active surveillance data to correct reported dengue case data from passive surveillance records. We then evaluated the forecast retrospectively with available epidemiological information. FINDINGS: The predictions correctly forecast an early peak in dengue incidence in March, 2016, with a 90% chance of exceeding the mean dengue incidence for the previous 5 years. Accounting for the proportion of chikungunya cases that had been incorrectly recorded as dengue in 2015 improved the prediction of the magnitude of dengue incidence in 2016. INTERPRETATION: This dengue prediction framework, which uses seasonal climate and El Niño forecasts, allows a prediction to be made at the start of the year for the entire dengue season. Combining active surveillance data with routine dengue reports improved not only model fit and performance, but also the accuracy of benchmark estimates based on historical seasonal averages. This study advances the state-of-the-art of climate services for the health sector, by showing the potential value of incorporating climate information in the public health decision-making process in Ecuador. FUNDING: European Union FP7, Royal Society, and National Science Foundation.


Subject(s)
Dengue/epidemiology , El Nino-Southern Oscillation , Weather , Cities/epidemiology , Climate , Dengue/virology , Ecuador/epidemiology , Forecasting , Incidence , Models, Theoretical , Retrospective Studies
4.
Sci Rep ; 6: 36344, 2016 11 03.
Article in English | MEDLINE | ID: mdl-27808279

ABSTRACT

Despite extensive ongoing efforts on improving the long-term prediction of El Niño-Southern Oscillation, the predictability in state-of-the-art operational schemes remains limited by factors such as the spring barrier and the influence of atmospheric winds. Recent research suggests that the 2014/15 El Niño (EN) event was stalled as a result of an unusually strong basin-wide easterly wind burst in June, which led to the discharge of a large fraction of the subsurface ocean heat. Here we use observational records and numerical experiments to explore the sensitivity of EN to the magnitude of the heat buildup occurring in the ocean subsurface 21 months in advance. Our simulations suggest that a large increase in heat content during this phase can lead to basin-wide uniform warm conditions in the equatorial Pacific the winter before the occurrence of a very strong EN event. In our model configuration, the system compensates any initial decrease in heat content and naturally evolves towards a new recharge, resulting in a delay of up to one year in the occurrence of an EN event. Both scenarios substantiate the non-linear dependency between the intensity of the subsurface heat buildup and the magnitude and timing of subsequent EN episodes.

SELECTION OF CITATIONS
SEARCH DETAIL
...