Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 18(11): e0293877, 2023.
Article in English | MEDLINE | ID: mdl-37934763

ABSTRACT

INTRODUCTION: Centranthus kellereri is a Bulgarian endemic plant species, found only in two locations in the world: The Balkans Mountains (Stara Planina), above the town of Vratsa, and The Pirin Mountains, above the town of Bansko, Bulgaria. Being endemic and endangered species precluded any significant research on it. The hypothesis of this study was that the populations of C. kellereri may represent genetically, phytochemically, and morphologically distinct forms and these will differentiate from C. ruber. Furthermore, C. kellereri possibly imperfect embryology may preclude its more widespread distribution under natural conditions. RESULTS: This study revealed the phytochemical profile, antioxidant activity, embryology, surface microstructural morphological traits, and genetic differences between the C. kellereri plants from the only two natural populations and compares them to the ones of the related and better-known plant C. ruber. The essential oil (EO) content in aboveground plant parts and in roots was generally low and the EO composition varied significantly as a function of plant part, year of sampling, location, and species. Methylvaleric acid was a major EO constituent in the C. kellereri EO, ranging between 60.2% and 71.7% of the total EO. The EO included monoterpenes, sequiterpenes, long-chain alkanes and fatty acids. Phytochemical analyses of plant tissue revealed the occurrence of 32 compounds that were tentatively identified as 6 simple phenolics, 18 flavonoids, 1 quinone, 1 lipid, 1 alkaloid, 2 diterpenes, and 3 triterpenes. There were differences in detected compounds between the C. kellereri plants at the two locations and between the roots and shoots in both species. The total phenols and flavonoids varied between the two species but were also dissimilar between the plants from the two populations of C. kelleri. Free radical scavenging activity, measured with ABTS and DPPH in aqueous and methanol extracts, had similar values; however, overall, C. kellereri from Vratsa showed the highest antioxidant activity while C. ruber had the lowest activity. Genetic analyses showed a clear differentiation between C. kellereri and C. ruber, and between the two populations of C. kellereri. Embryological studies revealed the peculiarities of the male and female generative spheres of the two species that were defined as being sexually reproducing. The pollen had high viability; however, the low viability of seeds demonstrated possible high sensitivity of C. kellereri to the environmental conditions, perhaps the main factor modifying and restricting the population sizes. The SEM analyses exposed differences in surface microstructural traits between the species (C. kellereri and C. ruber) but also between the two populations of C. kellereri. The observed dissimilarities in genetic makeup, micromorphological characteristics, and phytochemical composition strongly indicate that the two populations can be classified as distinct subspecies or varieties of C. kellereri; var. pirinensis and var. balkanensis. Further research is needed to introduce C. kellereri into culture and develop it as a high-value specialty crop or ornamental in order to conserve C. kellereri natural populations. C. kellereri may be utilized as a source for phytochemicals of interest and as an ornamental plant like C. ruber; however, it may have a greater environmental plasticity and adaptation as evidenced by its current locations.


Subject(s)
Antioxidants , Oils, Volatile , Antioxidants/analysis , Plant Extracts/chemistry , Phytochemicals/chemistry , Oils, Volatile/chemistry , Phenols/analysis , Flavonoids/analysis
2.
PLoS One ; 15(6): e0233516, 2020.
Article in English | MEDLINE | ID: mdl-32479498

ABSTRACT

The Balkans endemic species Alkanna primuliflora Griseb., A. stribrnyi Velen., and A. graeca Boiss. & Spruner have limited distribution in the Balkan Peninsula and a large variation in the morphological characteristics. The populations of the three Alkanna species in the Bulgarian flora are small and fragmented. There are no previous reports on the chemical profile or on the embryology of these species. The hypothesis was that the limited distribution of A. primuliflora, A. stribrnyi, and A. graeca was due to their reproductive capacity and genetic diversity. Furthermore, we hypothesized that the three species will contain pyrrolizidine alkaloids (PAs), as other species of the genus Alkanna (Boraginaceae), but they would have differential alkaloids composition. The population genetic structure and differentiation showed a clear distinction between species and revealed average levels of genetic diversity among the natural populations of the three Alkanna species. The embryological investigation observed stability of the processes in the male and female generative spheres and high viability of mature pollen and embryo of the three species. The normal formation of male and female gametophytes without deviations or degenerative processes, and observed levels of genetic diversity between Alkanna individuals are important in maintaining the size and resilience of the Alkanna populations. Eight alkaloids were identified by GC-MS in A. primuliflora and A. graeca and six alkaloids in A. stribrnyi. The main pyrrolizidine alkaloids (PAs) in all investigated species was triangularine. A. primuliflora and A. graeca showed similar chemical composition that comprised 9-angeloylretronecine, 7-tigloylretronecine, 9-tigloylretronecine, triangularicine, dihydroxytriangularine, dihydroxytriangularicine, whereas, in A. stribrnyi 9-tigloylretronecine, triangularicine and dihydroxytriangularicine were not found. This is the first report on the presence of PAs in A. primuliflora, A. stribrnyi and A. graeca. Besides, this is the first report on the embryology of these endemic species. The results contribute to the knowledge of the three endemic Alkanna species and will facilitate policy-making and defining new strategies for their conservation.


Subject(s)
Boraginaceae/chemistry , Boraginaceae/genetics , Alkaloids/analysis , Balkan Peninsula , Boraginaceae/metabolism , Bulgaria , Chromatography, High Pressure Liquid/methods , Gas Chromatography-Mass Spectrometry/methods , Genetic Variation/genetics , Plant Extracts/chemistry , Pyrrolizidine Alkaloids/chemistry , Reproduction/physiology , Species Specificity
3.
Eng Life Sci ; 18(11): 820-830, 2018 Nov.
Article in English | MEDLINE | ID: mdl-32624875

ABSTRACT

In the recent years, consumers' interest in healthy diet opened a new field for functional food development through combining the valuable composition of cereals and the health-promoting properties of lactic acid bacteria (LAB). LAB with amylolytic properties can assimilate starch in a single-step process and could be successfully applied as starter cultures offering an efficient nutritional conversion of cereal matrices. The probiotic potential of amylolytic LAB has not been investigated so far, therefore the present study focused on the molecular screening and in vitro tests of five amylolytic Lactobacillus plantarum strains to assess their tolerance to high acid and bile salts concentrations and antibiotic resistance as basic characteristics required for probiotic strains selection. Results showed excellent correspondence between the genetic screening and the phenotypic tests performed. Survivability at high acidity and bile salts presence was strain specific, with significant positive effect observed for cultures in stationary phase compared to those in exponential phase. Effect of starch in the medium proved most important to ensure viability of the amylolytic strains, which reveals the excellent potential of amylolytic LAB for commercially relevant probiotic applications. The strains proved to be generally safe in terms of antibiotic resistance. Among the five tested strains, L. plantarum Bom2 showed the best probiotic potential.

4.
Nat Prod Commun ; 12(2): 189-192, 2017 Feb.
Article in English | MEDLINE | ID: mdl-30428208

ABSTRACT

Verbascum (Mullein) flowers are highly valued as natural remedy for various respiratory diseases. Verbascum anisophyllum Murb. is a Balkan endemic, protected by law and included in the Bulgarian Red Data Book as "Critically Endangered". Thus, a strict conservation policy and a reliable evaluation of its genetic resources are required, considering its narrow distribution range and the increasing risk from destruction of its habitats. Here, we used Inter-simple sequence repeat (ISSR) markers to characterize the genetic diversity and to assess the genetic differentiation between the existing populations of VerbascUM anisophyllum in Bulgaria. The level of genetic diversity found herein clearly indicates a long-term potential for adaptability of this endangered plant. Our findings provide important knowledge of population genetic structure of this species, thus representing a strategy for its efficient conservation and utilization.


Subject(s)
Genetic Variation , Microsatellite Repeats , Verbascum/genetics , Conservation of Natural Resources
SELECTION OF CITATIONS
SEARCH DETAIL
...