Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 16699, 2023 10 04.
Article in English | MEDLINE | ID: mdl-37794029

ABSTRACT

Mucopolysaccharidosis type IIIB (MPS IIIB) is a rare and devastating childhood-onset lysosomal storage disease caused by complete loss of function of the lysosomal hydrolase α-N-acetylglucosaminidase. The lack of functional enzyme in MPS IIIB patients leads to the progressive accumulation of heparan sulfate throughout the body and triggers a cascade of neuroinflammatory and other biochemical processes ultimately resulting in severe mental impairment and early death in adolescence or young adulthood. The low prevalence and severity of the disease has necessitated the use of animal models to improve our knowledge of the pathophysiology and for the development of therapeutic treatments. In this study, we took a systematic approach to characterizing a classical mouse model of MPS IIIB. Using a series of histological, biochemical, proteomic and behavioral assays, we tested MPS IIIB mice at two stages: during the pre-symptomatic and early symptomatic phases of disease development, in order to validate previously described phenotypes, explore new mechanisms of disease pathology and uncover biomarkers for MPS IIIB. Along with previous findings, this study helps provide a deeper understanding of the pathology landscape of this rare disease with high unmet medical need and serves as an important resource to the scientific community.


Subject(s)
Mucopolysaccharidosis III , Humans , Mice , Animals , Young Adult , Adult , Child , Mucopolysaccharidosis III/genetics , Acetylglucosaminidase/genetics , Proteomics , Heparitin Sulfate , Hydrolases , Disease Models, Animal
2.
MAbs ; 15(1): 2229098, 2023.
Article in English | MEDLINE | ID: mdl-37381177

ABSTRACT

The blood-brain barrier (BBB) largely excludes antibodies from entering the central nervous system, thus limiting the potential of therapeutic antibodies to treat conditions such as neurodegenerative diseases and neuro-psychiatric disorders. Here, we demonstrate that the transport of human antibodies across the BBB in mice can be enhanced by modulating their interactions with the neonatal Fc receptor (FcRn). When M252Y/S254T/T246E substitutions are introduced on the antibody Fc domain, immunohistochemical assays reveal widespread distribution of the engineered antibodies throughout the mouse brain. These engineered antibodies remain specific for their antigens and retain pharmacological activity. We propose that novel brain-targeted therapeutic antibodies can be engineered to differentially engage FcRn for receptor-mediated transcytosis across the BBB in order to improve neurological disease therapeutics in the future.


Subject(s)
Antibodies , Blood-Brain Barrier , Animals , Humans , Mice , Brain , Transcytosis
3.
Development ; 149(17)2022 09 01.
Article in English | MEDLINE | ID: mdl-36102617

ABSTRACT

Calcium influx can be stimulated by various intra- and extracellular signals to set coordinated gene expression programs into motion. As such, the precise regulation of intracellular calcium represents a nexus between environmental cues and intrinsic genetic programs. Mounting genetic evidence points to a role for the deregulation of intracellular calcium signaling in neuropsychiatric disorders of developmental origin. These findings have prompted renewed enthusiasm for understanding the roles of calcium during normal and dysfunctional prenatal development. In this Review, we describe the fundamental mechanisms through which calcium is spatiotemporally regulated and directs early neurodevelopmental events. We also discuss unanswered questions about intracellular calcium regulation during the emergence of neurodevelopmental disease, and provide evidence that disruption of cell-specific calcium homeostasis and/or redeployment of developmental calcium signaling mechanisms may contribute to adult neurological disorders. We propose that understanding the normal developmental events that build the nervous system will rely on gaining insights into cell type-specific calcium signaling mechanisms. Such an understanding will enable therapeutic strategies targeting calcium-dependent mechanisms to mitigate disease.


Subject(s)
Calcium , Nervous System Diseases , Calcium/metabolism , Calcium Signaling/physiology , Cerebral Cortex/metabolism , Humans
4.
Genes Dev ; 35(5-6): 335-353, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33602870

ABSTRACT

mSWI/SNF or BAF chromatin regulatory complexes are dosage-sensitive regulators of human neural development frequently mutated in autism spectrum disorders and intellectual disability. Cell cycle exit and differentiation of neural stem/progenitor cells is accompanied by BAF subunit switching to generate neuron-specific nBAF complexes. We manipulated the timing of BAF subunit exchange in vivo and found that early loss of the npBAF subunit BAF53a stalls the cell cycle to disrupt neurogenesis. Loss of BAF53a results in decreased chromatin accessibility at specific neural transcription factor binding sites, including the pioneer factors SOX2 and ASCL1, due to Polycomb accumulation. This results in repression of cell cycle genes, thereby blocking cell cycle progression and differentiation. Cell cycle block upon Baf53a deletion could be rescued by premature expression of the nBAF subunit BAF53b but not by other major drivers of proliferation or differentiation. WNT, EGF, bFGF, SOX2, c-MYC, or PAX6 all fail to maintain proliferation in the absence of BAF53a, highlighting a novel mechanism underlying neural progenitor cell cycle exit in the continued presence of extrinsic proliferative cues.


Subject(s)
Actins/metabolism , Cell Cycle/genetics , Cerebellar Cortex/embryology , Chromatin/metabolism , Chromosomal Proteins, Non-Histone/metabolism , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Developmental , Actins/genetics , Animals , Binding Sites/genetics , Cells, Cultured , Chromatin/genetics , Chromosomal Proteins, Non-Histone/genetics , DNA-Binding Proteins/genetics , Embryo, Mammalian , Gene Deletion , Genes, cdc/genetics , Mice , Neurogenesis/genetics , Polycomb-Group Proteins/metabolism , Transcription Factors/metabolism
5.
Elife ; 82019 12 23.
Article in English | MEDLINE | ID: mdl-31868578

ABSTRACT

The syndromic autism spectrum disorder (ASD) Timothy syndrome (TS) is caused by a point mutation in the alternatively spliced exon 8A of the calcium channel Cav1.2. Using mouse brain and human induced pluripotent stem cells (iPSCs), we provide evidence that the TS mutation prevents a normal developmental switch in Cav1.2 exon utilization, resulting in persistent expression of gain-of-function mutant channels during neuronal differentiation. In iPSC models, the TS mutation reduces the abundance of SATB2-expressing cortical projection neurons, leading to excess CTIP2+ neurons. We show that expression of TS-Cav1.2 channels in the embryonic mouse cortex recapitulates these differentiation defects in a calcium-dependent manner and that in utero Cav1.2 gain-and-loss of function reciprocally regulates the abundance of these neuronal populations. Our findings support the idea that disruption of developmentally regulated calcium channel splicing patterns instructively alters differentiation in the developing cortex, providing important in vivo insights into the pathophysiology of a syndromic ASD.


Subject(s)
Alternative Splicing/physiology , Autism Spectrum Disorder/metabolism , Calcium Channels/metabolism , Cell Differentiation/physiology , Animals , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/pathology , Autistic Disorder , Brain/embryology , Brain/growth & development , Calcium , Calcium Channels/genetics , Calcium Channels, L-Type/genetics , Calcium Channels, L-Type/metabolism , Cerebral Cortex/embryology , Cerebral Cortex/metabolism , Exons , Gene Expression Regulation, Developmental , Humans , Induced Pluripotent Stem Cells/metabolism , Long QT Syndrome , Matrix Attachment Region Binding Proteins/metabolism , Mice , Models, Animal , Mutation , Neurogenesis , Neurons/cytology , Neurons/metabolism , RNA Splicing , Repressor Proteins/genetics , Repressor Proteins/metabolism , Syndactyly , Transcription Factors/metabolism , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
6.
Proc Natl Acad Sci U S A ; 112(23): 7195-200, 2015 Jun 09.
Article in English | MEDLINE | ID: mdl-26015562

ABSTRACT

The touch dome is a highly patterned mechanosensory structure in the epidermis composed of specialized keratinocytes in juxtaposition with innervated Merkel cells. The touch dome epithelium is maintained by tissue-specific stem cells, but the signals that regulate the touch dome are not known. We identify touch dome stem cells that are unique among epidermal cells in their activated Hedgehog signaling and ability to maintain the touch dome as a distinct lineage compartment. Skin denervation reveals that renewal of touch dome stem cells requires a perineural microenvironment, and deleting Sonic hedgehog (Shh) in neurons or Smoothened in the epidermis demonstrates that Shh is an essential niche factor that maintains touch dome stem cells. Up-regulation of Hedgehog signaling results in neoplastic expansion of touch dome keratinocytes but no Merkel cell neoplasia. These findings demonstrate that nerve-derived Shh is a critical regulator of lineage-specific stem cells that maintain specialized sensory compartments in the epidermis.


Subject(s)
Hedgehog Proteins/metabolism , Sensory Receptor Cells/cytology , Signal Transduction , Stem Cells/cytology , Touch , Animals , Epithelial Cells/metabolism , Homeostasis , Mice , Sensory Receptor Cells/metabolism
7.
Development ; 141(18): 3445-57, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25183867

ABSTRACT

The hedgehog (HH) pathway is well known for its mitogenic and morphogenic functions during development, and HH signaling continues in discrete populations of cells within many adult mammalian tissues. Growing evidence indicates that HH regulates diverse quiescent stem cell populations, but the exact roles that HH signaling plays in adult organ homeostasis and regeneration remain poorly understood. Here, we review recently identified functions of HH in modulating the behavior of tissue-specific adult stem and progenitor cells during homeostasis, regeneration and disease. We conclude that HH signaling is a key factor in the regulation of adult tissue homeostasis and repair, acting via multiple different routes to regulate distinct cellular outcomes, including maintenance of plasticity, in a context-dependent manner.


Subject(s)
Adult Stem Cells/physiology , Germ Layers/metabolism , Hedgehog Proteins/metabolism , Homeostasis/physiology , Models, Biological , Signal Transduction/physiology , Adult , Humans
8.
J Neurosci ; 33(44): 17490-505, 2013 Oct 30.
Article in English | MEDLINE | ID: mdl-24174682

ABSTRACT

Sonic hedgehog (SHH), a key regulator of embryonic neurogenesis, signals directly to neural stem cells (NSCs) in the subventricular zone (SVZ) and to astrocytes in the adult mouse forebrain. The specific mechanism by which the GLI2 and GLI3 transcriptional activators (GLI2(A) and GLI3(A)) and repressors (GLI2(R) and GLI3(R)) carry out SHH signaling has not been addressed. We found that the majority of slow-cycling NSCs express Gli2 and Gli3, whereas Gli1 is restricted ventrally and all three genes are downregulated when NSCs transition into proliferating progenitors. Surprisingly, whereas conditional ablation of Smo in postnatal glial fibrillary acidic protein-expressing cells results in cell-autonomous loss of NSCs and a progressive reduction in SVZ proliferation, without an increase in glial cell production, removal of Gli2 or Gli3 does not alter adult SVZ neurogenesis. Significantly, removing Gli3 in Smo conditional mutants largely rescues neurogenesis and, conversely, expression of a constitutive GLI3(R) in the absence of normal Gli2 and Gli3 abrogates neurogenesis. Thus unattenuated GLI3(R) is a primary inhibitor of adult SVZ NSC function. Ablation of Gli2 and Gli3 revealed a minor role for GLI2(R) and little requirement for GLI(A) function in stimulating SVZ neurogenesis. Moreover, we found that similar rules of GLI activity apply to SHH signaling in regulating SVZ-derived olfactory bulb interneurons and maintaining cortical astrocyte function. Namely, fewer superficial olfactory bulb interneurons are generated in the absence of Gli2 and Gli3, whereas astrocyte partial gliosis results from an increase in GLI3(R). Thus precise titration of GLI(R) levels by SHH is critical to multiple functions of adult NSCs and astrocytes.


Subject(s)
Astrocytes/physiology , Hedgehog Proteins/genetics , Kruppel-Like Transcription Factors/metabolism , Nerve Tissue Proteins/metabolism , Neural Stem Cells/physiology , Signal Transduction/genetics , Animals , Astrocytes/pathology , Female , Kruppel-Like Transcription Factors/deficiency , Kruppel-Like Transcription Factors/genetics , Male , Mice , Mice, Knockout , Mice, Transgenic , Nerve Tissue Proteins/deficiency , Nerve Tissue Proteins/genetics , Olfactory Bulb/cytology , Olfactory Bulb/pathology , Olfactory Bulb/physiology , Zinc Finger Protein Gli3
9.
J Neurosci ; 30(41): 13597-608, 2010 Oct 13.
Article in English | MEDLINE | ID: mdl-20943901

ABSTRACT

Astrocytes are an essential component of the CNS, and recent evidence points to an increasing diversity of their functions. Identifying molecular pathways that mediate distinct astrocyte functions, is key to understanding how the nervous system operates in the intact and pathological states. In this study, we demonstrate that the Hedgehog (Hh) pathway, well known for its roles in the developing CNS, is active in astrocytes of the mature mouse forebrain in vivo. Using multiple genetic approaches, we show that regionally distinct subsets of astrocytes receive Hh signaling, indicating a molecular diversity between specific astrocyte populations. Furthermore, we identified neurons as a source of Sonic hedgehog (Shh) in the adult forebrain, suggesting that Shh signaling is involved in neuron-astrocyte communication. Attenuation of Shh signaling in postnatal astrocytes by targeted removal of Smoothened, an obligate Shh coreceptor, resulted in upregulation of GFAP and cellular hypertrophy specifically in astrocyte populations regulated by Shh signaling. Collectively, our findings demonstrate a role for neuron-derived Shh in regulating specific populations of differentiated astrocytes.


Subject(s)
Astrocytes/metabolism , Cell Communication/physiology , Hedgehog Proteins/metabolism , Neurons/metabolism , Prosencephalon/metabolism , Animals , Cell Count , Immunohistochemistry , Mice , Mice, Transgenic , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...