Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 22(13)2022 Jul 05.
Article in English | MEDLINE | ID: mdl-35808555

ABSTRACT

Environment perception remains one of the key tasks in autonomous driving for which solutions have yet to reach maturity. Multi-modal approaches benefit from the complementary physical properties specific to each sensor technology used, boosting overall performance. The added complexity brought on by data fusion processes is not trivial to solve, with design decisions heavily influencing the balance between quality and latency of the results. In this paper we present our novel real-time, 360∘ enhanced perception component based on low-level fusion between geometry provided by the LiDAR-based 3D point clouds and semantic scene information obtained from multiple RGB cameras, of multiple types. This multi-modal, multi-sensor scheme enables better range coverage, improved detection and classification quality with increased robustness. Semantic, instance and panoptic segmentations of 2D data are computed using efficient deep-learning-based algorithms, while 3D point clouds are segmented using a fast, traditional voxel-based solution. Finally, the fusion obtained through point-to-image projection yields a semantically enhanced 3D point cloud that allows enhanced perception through 3D detection refinement and 3D object classification. The planning and control systems of the vehicle receives the individual sensors' perception together with the enhanced one, as well as the semantically enhanced 3D points. The developed perception solutions are successfully integrated onto an autonomous vehicle software stack, as part of the UP-Drive project.


Subject(s)
Automobile Driving , Semantics , Algorithms , Perception
2.
Sensors (Basel) ; 22(3)2022 Jan 20.
Article in English | MEDLINE | ID: mdl-35161529

ABSTRACT

Panoptic segmentation provides a rich 2D environment representation by unifying semantic and instance segmentation. Most current state-of-the-art panoptic segmentation methods are built upon two-stage detectors and are not suitable for real-time applications, such as automated driving, due to their high computational complexity. In this work, we introduce a novel, fast and accurate single-stage panoptic segmentation network that employs a shared feature extraction backbone and three network heads for object detection, semantic segmentation, instance-level attention masks. Guided by object detections, our new panoptic segmentation head learns instance specific soft attention masks based on spatial embeddings. The semantic masks for stuff classes and soft instance masks for things classes are pixel-wise coherent and can be easily integrated in a panoptic output. The training and inference pipelines are simplified and no post-processing of the panoptic output is necessary. Benefiting from fast inference speed, the network can be deployed in automated vehicles or robotic applications. We perform extensive experiments on COCO and Cityscapes datasets and obtain competitive results in both accuracy and time. On the Cityscapes dataset we achieve 59.7 panoptic quality with an inference speed of more than 10 FPS on high resolution 1024 × 2048 images.


Subject(s)
Automobile Driving , Robotics , Attention , Image Processing, Computer-Assisted , Semantics
3.
Sensors (Basel) ; 16(10)2016 Oct 17.
Article in English | MEDLINE | ID: mdl-27763501

ABSTRACT

The driving environment is complex and dynamic, and the attention of the driver is continuously challenged, therefore computer based assistance achieved by processing image and sensor data may increase traffic safety. While active sensors and stereovision have the advantage of obtaining 3D data directly, monocular vision is easy to set up, and can benefit from the increasing computational power of smart mobile devices, and from the fact that almost all of them come with an embedded camera. Several driving assistance application are available for mobile devices, but they are mostly targeted for simple scenarios and a limited range of obstacle shapes and poses. This paper presents a technique for generic, shape independent real-time obstacle detection for mobile devices, based on a dynamic, free form 3D representation of the environment: the particle based occupancy grid. Images acquired in real time from the smart mobile device's camera are processed by removing the perspective effect and segmenting the resulted bird-eye view image to identify candidate obstacle areas, which are then used to update the occupancy grid. The occupancy grid tracked cells are grouped into obstacles depicted as cuboids having position, size, orientation and speed. The easy to set up system is able to reliably detect most obstacles in urban traffic, and its measurement accuracy is comparable to a stereovision system.

SELECTION OF CITATIONS
SEARCH DETAIL
...