Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Insects ; 12(1)2020 Dec 25.
Article in English | MEDLINE | ID: mdl-33375590

ABSTRACT

Exploitation of heterogenous distributions of Deroceras reticulatum, in arable fields by targeting molluscicide applications toward areas with higher slug densities, relies on these patches displaying sufficient spatio-temporal stability. Regular sampling of slug activity/distribution was undertaken using 1 ha rectangular grids of 100 refuge traps established in 22 commercial arable field crops. Activity varied significantly between the three years of the study, and the degree of aggregation (Taylor's Power Law) was higher in fields with higher mean trap catches. Hot spot analysis detected statistically significant spatial clusters in all fields, and in 162 of the 167 individual assessment visits. The five assessment visits in which no clusters were detected coincided with low slug activity (≤0.07 per trap). Generalized Linear Models showed significant spatial stability of patches in 11 fields, with non-significant fields also characterized by low slug activity (≤1.2 per trap). Mantel's permutation tests revealed a high degree of correlation between location of individual patches between sampling dates. It was concluded that patches of higher slug density were spatio-temporally stable, but detection using surface refuge traps (which rely on slug activity on the soil surface) was less reliable when adverse environmental conditions resulted in slugs retreating into the upper soil horizons.

2.
J Theor Biol ; 505: 110421, 2020 11 21.
Article in English | MEDLINE | ID: mdl-32735993

ABSTRACT

The patterns of collective behaviour in a population emerging from individual animal movement have long been of interest to ecologists, as has the emergence of heterogeneous patterns among a population. In this paper we will consider these phenomena by using an individual-based modelling approach to simulate a population whose individuals undergo density-dependent movement in 2D spatial domains. We first show that the introduction of density-dependent movement in the form of two parameters, a perception radius and a probability of directed movement, leads to the formation of clusters. We then show that the properties of the clusters and their stability over time are different between populations of Brownian and non-Brownian walkers and are also dependent on the choice of parameters. Finally, we consider the effect of the probability of directed movement on the temporal stability of clusters and show that while clusters formed by Brownian and non-Brownian walkers may have similar properties with certain parameter sets, the spatio-temporal dynamics remain different.


Subject(s)
Models, Biological , Movement , Animals , Population Dynamics , Probability
3.
Pest Manag Sci ; 76(9): 2944-2952, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32400941

ABSTRACT

BACKGROUND: The distribution of the grey field slug (Deroceras reticulatum Müller) in arable fields is characterised by patches containing higher slug densities dispersed within areas of lower densities. Behavioural responses that lead to the spatial/temporal stability of these patches are poorly understood, thus this study investigated behavioural mechanisms underpinning slug distribution using a new method for long-term tracking of individual slug movement in the field. RESULTS: A technique for implanting radio frequency identification (RFID) tags (each with a unique identification code) beneath the body wall of slugs was developed. Laboratory tests indicated no consistent detrimental effect on survival, feeding, egg laying or locomotor behaviour (velocity, distance travelled). Movement of individual slugs above and below the soil surface was recorded for >5 weeks (in spring and autumn) in winter wheat fields. Most (~80%) foraged within a limited area; and at the end of the observation period were located at a mean distance of 78.7 ± 33.7 cm (spring) or 101.9 ± 24.1 cm (autumn) from their release point. The maximum detected distance from the release point was 408.8 cm. The remaining slugs (~20%) moved further away and ultimately were lost. CONCLUSIONS: RFID tagging allowed continuous tracking of individual slugs, even below the soil surface. Localised movement of 80% of tracked slugs over 5 weeks offers a mechanism promoting stable slug patches in arable crops. Rapid dispersal of the remaining slugs facilitates exchange of individuals between patches. Precision targeting of pesticides at such stable slug patches may facilitate reduced usage. © 2020 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Gastropoda , Animals , Crops, Agricultural , Humans , Seasons , Triticum
4.
Insects ; 9(1)2018 Feb 27.
Article in English | MEDLINE | ID: mdl-29495513

ABSTRACT

Studies addressing many ecological problems require accurate evaluation of the total population size. In this paper, we revisit a sampling procedure used for the evaluation of the abundance of an invertebrate population from assessment data collected on a spatial grid of sampling locations. We first discuss how insufficient information about the spatial population density obtained on a coarse sampling grid may affect the accuracy of an evaluation of total population size. Such information deficit in field data can arise because of inadequate spatial resolution of the population distribution (spatially variable population density) when coarse grids are used, which is especially true when a strongly heterogeneous spatial population density is sampled. We then argue that the average trap count (the quantity routinely used to quantify abundance), if obtained from a sampling grid that is too coarse, is a random variable because of the uncertainty in sampling spatial data. Finally, we show that a probabilistic approach similar to bootstrapping techniques can be an efficient tool to quantify the uncertainty in the evaluation procedure in the presence of a spatial pattern reflecting a patchy distribution of invertebrates within the sampling grid.

SELECTION OF CITATIONS
SEARCH DETAIL
...