Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Hematol ; : 104247, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38848877

ABSTRACT

Hematopoietic stem cells (HSCs) adapt to organismal blood production needs by balancing self-renewal and differentiation, adjusting to physiological demands and external stimuli. While sex differences have been implicated in differential hematopoietic function in males vs. females, the mediators responsible for these effects require further study. Here, we characterize hematopoiesis at steady state and during regeneration following hematopoietic stem cell transplantation (HST). RNA sequencing of lineage(-) bone marrow cells from C57/Bl6 mice revealed a broad transcriptional similarity between the sexes. However, we identified distinct sex differences in key biological pathways, with female cells showing reduced expression of signatures involved in inflammation and an enrichment of genes related to glycolysis, hypoxia, and cell cycle regulation, suggesting a more quiescent and less inflammatory profile compared to male cells. To determine the functional impacts of the observed transcriptomic differences, we performed sex-matched and mismatched transplantation studies of lineage(-) donor cells. During short-term 56-day HST recovery we found a male donor cell proliferative advantage, coinciding with elevated serum TNF-α, and a male recipient engraftment advantage, coinciding with increased serum CXCL12. Together, we show that sex-specific cell responses, marked by differing expression of pathways regulating metabolism, hypoxia, and inflammation, shapes normal and regenerative hematopoiesis, with implications for the clinical understanding of hematopoietic function.

2.
Nat Chem Biol ; 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38528120

ABSTRACT

Exportin-1 (XPO1/CRM1) plays a central role in the nuclear-to-cytoplasmic transport of hundreds of proteins and contributes to other cellular processes, such as centrosome duplication. Small molecules targeting XPO1 induce cytotoxicity, and selinexor was approved by the Food and Drug Administration in 2019 as a cancer chemotherapy for relapsed multiple myeloma. Here, we describe a cell-type-dependent chromatin-binding function for XPO1 that is essential for the chromatin occupancy of NFAT transcription factors and thus the appropriate activation of T cells. Additionally, we establish a class of XPO1-targeting small molecules capable of disrupting the chromatin binding of XPO1 without perturbing nuclear export or inducing cytotoxicity. This work defines a broad transcription regulatory role for XPO1 that is essential for T cell activation as well as a new class of XPO1 modulators to enable therapeutic targeting of XPO1 beyond oncology including in T cell-driven autoimmune disorders.

SELECTION OF CITATIONS
SEARCH DETAIL
...