Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Microorganisms ; 10(8)2022 Aug 09.
Article in English | MEDLINE | ID: mdl-36014027

ABSTRACT

Bisphenols are used in the process of polymerization of polycarbonate plastics and epoxy resins. Bisphenols can easily migrate out of plastic products and enter the gastrointestinal system. By increasing colonic inflammation in mice, disrupting the intestinal bacterial community structure and altering the microbial membrane transport system in zebrafish, bisphenols seem to interfere with the gut microbiome. The highly abundant human commensal bacterium Bacteroides thetaiotaomicron was exposed to bisphenols (Bisphenol A (BPA), Bisphenol F (BPF), Bisphenol S (BPS)), to examine the mode of action, in particular of BPF. All chemicals caused a concentration-dependent growth inhibition and the half-maximal effective concentration (EC50) corresponded to their individual logP values, a measure of their hydrophobicity. B. thetaiotaomicron exposed to BPF decreased membrane fluidity with increasing BPF concentrations. Physiological changes including an increase of acetate concentrations were observed. On the proteome level, a higher abundance of several ATP synthase subunits and multidrug efflux pumps suggested an increased energy demand for adaptive mechanisms after BPF exposure. Defense mechanisms were also implicated by a pathway analysis that identified a higher abundance of members of resistance pathways/strategies to cope with xenobiotics (i.e., antibiotics). Here, we present further insights into the mode of action of bisphenols in a human commensal gut bacterium regarding growth inhibition, and the physiological and functional state of the cell. These results, combined with microbiota-directed effects, could lead to a better understanding of host health disturbances and disease development based on xenobiotic uptake.

2.
PLoS One ; 16(10): e0258845, 2021.
Article in English | MEDLINE | ID: mdl-34699527

ABSTRACT

The ectoparasite Varroa destructor Anderson and Trueman is the most important parasites of the western honey bee, Apis mellifera L. The most widely currently used treatment uses formic acid (FA), but the understanding of its effects on V. destructor is limited. In order to understand the mechanism of action of FA, its effect on Varroa mites was investigated using proteomic analysis by liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). V. destructor was collected from honey bee colonies with natural mite infestation before and 24 h after the initiation of FA treatment and subjected to proteome analysis. A total of 2637 proteins were identified. Quantitative analysis of differentially expressed candidate proteins (fold change ≥ 1.5; p ≤ 0.05) revealed 205 differentially expressed proteins: 91 were induced and 114 repressed in the FA-treated group compared to the untreated control group. Impaired protein synthesis accompanied by increased protein and amino acid degradation suggest an imbalance in proteostasis. Signs of oxidative stress included significant dysregulation of candidate proteins of mitochondrial cellular respiration, increased endocytosis, and induction of heat shock proteins. Furthermore, an increased concentration of several candidate proteins associated with detoxification was observed. These results suggest dysregulated cellular respiration triggered by FA treatment as well as an increase in cellular defense mechanisms, including induced heat shock proteins and detoxification enzymes.


Subject(s)
Arthropod Proteins/metabolism , Formates/pharmacology , Proteomics/methods , Varroidae/metabolism , Animals , Bees/parasitology , Cell Respiration/drug effects , Chromatography, Liquid , Gene Expression Regulation/drug effects , Oxidative Stress , Tandem Mass Spectrometry , Varroidae/drug effects
3.
BMC Bioinformatics ; 22(1): 277, 2021 May 26.
Article in English | MEDLINE | ID: mdl-34039272

ABSTRACT

BACKGROUND: Small Proteins have received increasing attention in recent years. They have in particular been implicated as signals contributing to the coordination of bacterial communities. In genome annotations they are often missing or hidden among large numbers of hypothetical proteins because genome annotation pipelines often exclude short open reading frames or over-predict hypothetical proteins based on simple models. The validation of novel proteins, and in particular of small proteins (sProteins), therefore requires additional evidence. Proteogenomics is considered the gold standard for this purpose. It extends beyond established annotations and includes all possible open reading frames (ORFs) as potential sources of peptides, thus allowing the discovery of novel, unannotated proteins. Typically this results in large numbers of putative novel small proteins fraught with large fractions of false-positive predictions. RESULTS: We observe that number and quality of the peptide-spectrum matches (PSMs) that map to a candidate ORF can be highly informative for the purpose of distinguishing proteins from spurious ORF annotations. We report here on a workflow that aggregates PSM quality information and local context into simple descriptors and reliably separates likely proteins from the large pool of false-positive, i.e., most likely untranslated ORFs. We investigated the artificial gut microbiome model SIHUMIx, comprising eight different species, for which we validate 5114 proteins that have previously been annotated only as hypothetical ORFs. In addition, we identified 37 non-annotated protein candidates for which we found evidence at the proteomic and transcriptomic level. Half (19) of these candidates have close functional homologs in other species. Another 12 candidates have homologs designated as hypothetical proteins in other species. The remaining six candidates are short (< 100 AA) and are most likely bona fide novel proteins. CONCLUSIONS: The aggregation of PSM quality information for predicted ORFs provides a robust and efficient method to identify novel proteins in proteomics data. The workflow is in particular capable of identifying small proteins and frameshift variants. Since PSMs are explicitly mapped to genomic locations, it furthermore facilitates the integration of transcriptomics data and other sources of genome-level information.


Subject(s)
Genomics , Proteomics , Open Reading Frames , Peptides/genetics , Proteins/genetics , Workflow
4.
Microbiome ; 9(1): 55, 2021 02 23.
Article in English | MEDLINE | ID: mdl-33622394

ABSTRACT

BACKGROUND: The intestinal microbiota plays a crucial role in protecting the host from pathogenic microbes, modulating immunity and regulating metabolic processes. We studied the simplified human intestinal microbiota (SIHUMIx) consisting of eight bacterial species with a particular focus on the discovery of novel small proteins with less than 100 amino acids (= sProteins), some of which may contribute to shape the simplified human intestinal microbiota. Although sProteins carry out a wide range of important functions, they are still often missed in genome annotations, and little is known about their structure and function in individual microbes and especially in microbial communities. RESULTS: We created a multi-species integrated proteogenomics search database (iPtgxDB) to enable a comprehensive identification of novel sProteins. Six of the eight SIHUMIx species, for which no complete genomes were available, were sequenced and de novo assembled. Several proteomics approaches including two earlier optimized sProtein enrichment strategies were applied to specifically increase the chances for novel sProtein discovery. The search of tandem mass spectrometry (MS/MS) data against the multi-species iPtgxDB enabled the identification of 31 novel sProteins, of which the expression of 30 was supported by metatranscriptomics data. Using synthetic peptides, we were able to validate the expression of 25 novel sProteins. The comparison of sProtein expression in each single strain versus a multi-species community cultivation showed that six of these sProteins were only identified in the SIHUMIx community indicating a potentially important role of sProteins in the organization of microbial communities. Two of these novel sProteins have a potential antimicrobial function. Metabolic modelling revealed that a third sProtein is located in a genomic region encoding several enzymes relevant for the community metabolism within SIHUMIx. CONCLUSIONS: We outline an integrated experimental and bioinformatics workflow for the discovery of novel sProteins in a simplified intestinal model system that can be generically applied to other microbial communities. The further analysis of novel sProteins uniquely expressed in the SIHUMIx multi-species community is expected to enable new insights into the role of sProteins on the functionality of bacterial communities such as those of the human intestinal tract. Video abstract.


Subject(s)
Bacterial Proteins/analysis , Bacterial Proteins/chemistry , Cell Communication , Gastrointestinal Microbiome , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/metabolism , Bacterial Proteins/genetics , Gastrointestinal Microbiome/genetics , Humans , Intestines/chemistry , Intestines/microbiology , Metagenome/genetics , Tandem Mass Spectrometry
5.
J Proteomics ; 213: 103604, 2020 02 20.
Article in English | MEDLINE | ID: mdl-31841667

ABSTRACT

Small proteins (sProteins) with a size of 100 amino acids and less are involved in major biological processes and play an important role in different bacteria. Despite the increasing interest in them, the data on sProteins in bacterial communities, like the human gut microbiome is sparse. In this study, we are using the extended simplified human intestinal microbiota (SIHUMIx) as model system of the human gut microbiome to detect sProteins and to compare different sProtein enrichment methods. We observed that with our tested methods, the C8-cartridge enrichment resulted in the highest number of detected sProteins (n = 295) with high reproducibility among replication analysis. However, in order to further increase the total number of sProteins, the combination of C8 cartridge enrichment with GelFree enrichment is favored because the latter complemented n = 48 more sProteins compared to the C8 cartridge approach resulting in n = 343 sProteins. Among all detected sProteins we were able to identify 79 so far uncharacterized sProteins, with no described protein evidence in the current released database. In total, 34 of those uncharacterized sProteins are localized in gene clusters conserved between different bacteria species allowing functional predictions. This study improves the assessment of sProtein detection and enables their functional characterization in future experiments. SIGNIFICANCE: Small proteins have great potential and are therefore obtaining high interest. Especially in human microbiota, many undiscovered and uncharacterized small proteins promote the understanding of complex host-microbiome and bacteria-bacteria interactions. However, a major challenge lies in the detection of small proteins using bottom-up proteomics. Our study leads to an improved identification of small proteins in bacterial communities. It further describes properties and potential functions of identified, previously uncharacterized small proteins. Altogether it improves the assessment of sProtein detection and enables their functional characterization in future experiments.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Proteomics , Bacteria , Humans , Proteins/analysis , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...