Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
J Appl Lab Med ; 7(1): 114-136, 2022 01 05.
Article in English | MEDLINE | ID: mdl-34996077

ABSTRACT

BACKGROUND: Autoimmune connective tissue disorders are a significant health concern throughout the world with an estimated prevalence of 3% to 5%. They are associated with a variety of autoantibodies that play roles in their diagnosis, risk stratification, prognostication, and/or management. While some autoantibodies have been well-characterized for use in clinical laboratories, many more are in the research stage. Rapid transition from research to clinical practice, lack of clinical guidelines, and harmonization across a rapidly growing number of commercially available tests create numerous challenges to clinicians and laboratories. CONTENT: This article briefly discusses common connective tissue disorders and their association with well-known autoantibodies, describes current methods used in clinical laboratories, and outlines their advantages and limitations in the context of these diseases. SUMMARY: Understanding the role of specific autoantibodies and various methodologies for autoantibody testing are important for laboratory professionals who may be introducing/repatriating new tests, updating existing tests, or advising clinicians/patients about testing options/results. Collaboration between laboratory professional staff and clinicians, around the advantages and limitations of each methodology, is also important in their appropriate clinical utilization.


Subject(s)
Autoimmune Diseases , Connective Tissue Diseases , Autoantibodies , Autoimmune Diseases/diagnosis , Autoimmune Diseases/epidemiology , Connective Tissue Diseases/diagnosis , Humans , Laboratories , Laboratories, Clinical
2.
Clin Biochem ; 95: 1-12, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34048776

ABSTRACT

OBJECTIVES: A consensus guidance is provided for testing, utility and verification of SARS-CoV-2 point-of-care test (POCT) performance and implementation of a quality management program, focusing on nucleic acid and antigen targeted technologies. DESIGN AND METHODS: The recommendations are based on current literature and expert opinion from the members of Canadian Society of Clinical Chemists (CSCC), and are intended for use inside or outside of healthcare settings that have varied levels of expertise and experience with POCT. RESULTS AND CONCLUSIONS: Here we discuss sampling requirements, biosafety, SARS-CoV-2 point-of-care testing methodologies (with focus on Health Canada approved tests), test performance and limitations, test selection, testing utility, development and implementation of quality management systems, quality improvement, and medical and scientific oversight.


Subject(s)
COVID-19/diagnosis , Consensus , Point-of-Care Testing/standards , Practice Guidelines as Topic/standards , SARS-CoV-2/isolation & purification , Societies, Scientific/standards , COVID-19/epidemiology , COVID-19/genetics , Canada/epidemiology , Humans , Qualitative Research , Quality Improvement/standards , SARS-CoV-2/genetics
3.
ACS Appl Mater Interfaces ; 12(47): 53462-53474, 2020 Nov 25.
Article in English | MEDLINE | ID: mdl-33180467

ABSTRACT

Colloidal semiconductor quantum dots (QDs), metal nanoparticles, and cellulose paper are materials with numerous applications in bioanalysis and beyond. The functional properties of QDs and metal NPs are substantially different than those of cellulose, such that their integration with cellulose paper is potentially enabling for many applications. Here, we characterize and evaluate multiple chemistries that modify cellulose paper substrates for the affinity-based immobilization of QDs, gold nanoparticles (Au NPs), and platinum nanoparticles (Pt NPs). These chemistries include grafting of cellulose fibers with imidazole and dithiol groups, as well as the aminosilanization of cellulose fibers (both with and without subsequent grafting with dithiol groups). Cellulose modifications and nanoparticle immobilization are characterized by multiple techniques, including, but not limited to, X-ray photoelectron spectroscopy, scanning electron microscopy, and optical imaging, extinction, and fluorescence measurements. We demonstrate the on-paper immobilization of color-tuned mixtures of QDs, on-paper patterning of QDs by microcontact printing, and post-immobilization enhancement of energy transfer and model assays of protease activity. The robustness of QD photoluminescence is also evaluated between immobilization chemistries. Paper-immobilized Au NPs and Pt NPs are evaluated as potential substrates for SERS and as supported catalysts for a model decolorization reaction. Our cumulative results indicate that there may not be a one-size-fits-all immobilization chemistry. Instead, the immobilization chemistry should be tailored and optimized for the downstream application.

6.
Bioconjug Chem ; 30(3): 525-530, 2019 03 20.
Article in English | MEDLINE | ID: mdl-30735042

ABSTRACT

Multidrug resistance (MDR) is a significant challenge in the treatment of many types of cancers as membrane-associated transporters actively pump drugs out of the cell, limiting therapeutic efficacy. While nanoparticle (NP)-based therapeutics have emerged as a mechanism for overcoming MDR, they often rely on the delivery of multiple anticancer drugs, nucleic acid hybrids, or MDR pump inhibitors. The effectiveness of these strategies, however, can be limited by their off-target toxicity or the need for genetic transfection. In this paper, we describe a NP-peptide-drug bioconjugate that achieves significant cell killing in MDR-positive cancer cells without the need for additional drugs. We use a quantum dot (QD) as a central scaffold to append two species of peptide, a cell-uptake peptide to facilitate endocytic internalization and a peptide-drug conjugate that is susceptible to cleavage by esterases found within the endocytic pathway. This approach relies on spatiotemporal control over drug release, where endosomes traffic drug away from membrane-resident pumps and release it closer to the nucleus. Cellular internalization studies showed high uptake of the NP-drug complex and nuclear localization of the drug after 48 h in MDR-positive cells. Additionally, cellular proliferation assays demonstrated a 40% decrease in cell viability for the NP-drug bioconjugate compared to free drug, confirming the utility of this system in overcoming MDR in cancer cells.


Subject(s)
Antineoplastic Agents/administration & dosage , Doxorubicin/administration & dosage , Drug Carriers/chemistry , Nanoconjugates/chemistry , Peptides/administration & dosage , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Cell Line, Tumor , Doxorubicin/chemistry , Doxorubicin/pharmacokinetics , Drug Resistance, Multiple , Drug Resistance, Neoplasm , Humans , Neoplasms/drug therapy , Peptides/chemistry , Peptides/pharmacokinetics
7.
Bioconjug Chem ; 29(1): 136-148, 2018 01 17.
Article in English | MEDLINE | ID: mdl-29191007

ABSTRACT

Nanoparticle (NP)-mediated drug delivery (NMDD) has emerged as a novel method to overcome the limitations of traditional systemic delivery of therapeutics, including the controlled release of the NP-associated drug cargo. Currently, our most advanced understanding of how to control NP-associated cargos is in the context of soft nanoparticles (e.g., liposomes), but less is known about controlling the release of cargos from the surface of hard NPs (e.g., gold NPs). Here we employ a semiconductor quantum dot (QD) as a prototypical hard NP platform and use intracellularly triggered actuation to achieve spatiotemporal control of drug release and modulation of drug efficacy. Conjugated to the QD are two peptides: (1) a cell-penetrating peptide (CPP) that facilitates uptake of the conjugate into the endocytic pathway and (2) a display peptide conjugated to doxorubicin (DOX) via three different linkages (ester, disulfide, and hydrazone) that are responsive to enzymatic cleavage, reducing conditions, and low pH, respectively. Formation of the QD-[peptide-DOX]-CPP complex is driven by self-assembly that allows control over both the ratio of each peptide species conjugated to the QD and the eventual drug dose delivered to cells. Förster resonance energy transfer assays confirmed successful assembly of the QD-peptide complexes and functionality of the linkages. Confocal microscopy was employed to visualize residence of the QD-[peptide-DOX]-CPP complexes in the endocytic pathway, and distinct differences in DOX localization were noted for the ester linkage, which showed clear signs of nuclear delivery versus the hydrazone, disulfide, and amide control. Finally, delivery of the QD-[peptide-DOX]-CPP conjugate resulted in cytotoxicity for the ester linkage that was comparable to free DOX. Attachment of DOX via the hydrazone linkage facilitated intermediary toxicity, while the disulfide and amide control linkages showed minimal toxicity. Our data demonstrate the utility of hard NP-peptide bioconjugates to function as multifunctional scaffolds for simultaneous control over cellular drug uptake and toxicity and the vital role played by the nature of the chemical linkage that appends the drug to the NP carrier.


Subject(s)
Antibiotics, Antineoplastic/administration & dosage , Cell-Penetrating Peptides/chemistry , Delayed-Action Preparations/chemistry , Doxorubicin/administration & dosage , Quantum Dots/chemistry , Antibiotics, Antineoplastic/chemistry , Antibiotics, Antineoplastic/pharmacokinetics , Antibiotics, Antineoplastic/pharmacology , Doxorubicin/chemistry , Doxorubicin/pharmacokinetics , Doxorubicin/pharmacology , Endocytosis , HeLa Cells , Humans , Nanoconjugates/chemistry , Neoplasms/drug therapy , Peptides/chemistry
8.
ACS Appl Mater Interfaces ; 9(36): 30359-30372, 2017 Sep 13.
Article in English | MEDLINE | ID: mdl-28846381

ABSTRACT

Enzymes have many important roles in biology and industry, and proteases are one of the most important classes of enzymes. Semiconductor quantum dots (QDs) are attractive materials for developing protease activity probes because of their advantageous physical and optical properties; however, interactions between a protease and a QD conjugated with its substrate can affect the turnover of that substrate. Here, we study the turnover of multivalent QD-peptide substrate conjugates as a function of multiple parameters: (i) the ligand coating on the QD, including dihydrolipoic acid (DHLA), glutathione (GSH), DHLA-poly(ethylene glycol) (DHLA-PEG), and DHLA-zwitterionic sulfobetaine (DHLA-SB); (ii) the identity of the protease, including trypsin, thrombin, and plasmin; and (iii) the number of substrate and nonsubstrate biomacromolecules conjugated per QD. We show that limiting protease adsorption on QDs is critical for optimizing the turnover of conjugated peptide substrates. Protease adsorption is inhibitory, and very strong adsorption leads to an apparent "scooting" mode of activity with limited turnover. In contrast, with weaker adsorption, enhancements in the turnover rate likely result from a "hopping" mode of activity. The putative hopping mode is thought to feature processive turnover of all substrates in multivalent conjugates with a rate-limiting step of diffusion between individual conjugates, and the magnitude of such enhancements increases with decreases in adsorption. Although it was possible to passivate DHLA- and GSH-coated QDs with high densities of conjugated biomacromolecules, the most effective strategy for reducing adsorption was the substitution of these ligands. Whereas passivation incrementally increased turnover, DHLA-PEG and DHLA-SB ligands converted the mode of turnover with plasmin from scooting to hopping and the DHLA-SB enhanced the turnover rates with thrombin and trypsin by approximately an order of magnitude relative to GSH ligands. The new insights from the broad scope of this study provide an important framework for designing optimized QD conjugates as probes and sensors for enzyme activity.


Subject(s)
Quantum Dots , Adsorption , Ligands , Peptides , Proteolysis
9.
Anal Bioanal Chem ; 408(11): 2913-25, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26790875

ABSTRACT

Point-of-care (POC) diagnostic technologies are needed to improve global health and smartphones are a prospective platform for these technologies. While many fluorescence or photoluminescence-based smartphone assays have been reported in the literature, common shortcomings are the requirement of an excitation light source external to the smartphone and complicated integration of that excitation source with the smartphone. Here, we show that the photographic flash associated with the smartphone camera can be utilized to enable all-in-one excitation and imaging of photoluminescence (PL), thus eliminating the need for an excitation light source external to the smartphone. A simple and low-cost 3D-printed accessory was designed to create a dark environment and direct excitation light from the smartphone flash onto a sample. Multiple colors and compositions of semiconductor quantum dot (QD) were evaluated as photoluminescent materials for all-in-one smartphone excitation and imaging of PL, and these were compared with fluorescein and R-phycoerythrin (R-PE), which are widely utilized molecular and protein materials for fluorescence-based bioanalysis. The QDs were found to exhibit much better brightness and have the best potential for two-color detection. A model protein binding assay with a sub-microgram per milliliter detection limit and a Förster resonance energy transfer (FRET) assay for proteolytic activity were demonstrated, including imaging with serum as a sample matrix. In addition, FRET within tandem conjugates of a QD donor and fluorescent dye acceptor enabled smartphone detection of dye fluorescence that was otherwise unobservable without the QD to enhance its brightness. The ideal properties of photoluminescent materials for all-in-one smartphone excitation and imaging are discussed in the context of several different materials, where QDs appear to be the best overall material for this application.


Subject(s)
Printing, Three-Dimensional , Quantum Dots , Smartphone , Fluorescence Resonance Energy Transfer , Luminescence , Models, Theoretical
10.
Analyst ; 140(12): 4037-45, 2015 Jun 21.
Article in English | MEDLINE | ID: mdl-25924885

ABSTRACT

The development of nanoparticle-based bioassays is an active and promising area of research, where point-of-care (POC) diagnostics are one of many prospective applications. Unfortunately, the majority of nanoparticle-based assays that have been developed to date have failed to address two important considerations for POC applications: use of instrumentation amenable to POC settings, and measurement of analytes in biological sample matrices such as serum and whole blood. To address these considerations, we present design criteria and demonstrate proof-of-concept for a semiconductor quantum dot (QD)-based assay format that utilizes smartphone readout for the single-step, Förster resonance energy transfer (FRET)-based detection of hydrolase activity in serum and whole blood, using thrombin as a model analyte. Important design criteria for assay development included (i) the size and emission wavelength of the QDs, which had to balance brightness for smartphone imaging, optical transmission through blood samples, and FRET efficiency for signaling; (ii) the wavelength of a light-emitting diode (LED) excitation source, which had to balance transmission through blood and the efficiency of excitation of QDs; and (iii) the use of an array of paper-in-polydimethylsiloxane (PDMS)-on-glass sample chips to reproducibly limit the optical path length through blood to ca. 250 µm and permit multiplexing. Ultimately, CdSe/CdS/ZnS QDs with peak emission at 630 nm were conjugated with Alexa Fluor 647-labeled peptide substrates for thrombin and immobilized on paper test strips inside the sample cells. This FRET system was sensitive to thrombin activity, where the recovery of QD emission with hydrolytic loss of FRET permitted kinetic assays in buffer, serum and whole blood. Quantitative results were obtained in less than 30 min with a limit of detection 18 NIH units mL(-1) of activity in 12 µL of whole blood. Proof-of-concept for a competitive binding assay was also demonstrated with the same platform. Overall, this work demonstrates that the integration of QDs with smartphones and other consumer electronics can potentiate bioassays that are highly amenable to future point-of-care diagnostic applications.


Subject(s)
Biological Assay/instrumentation , Dimethylpolysiloxanes , Paper , Quantum Dots/chemistry , Serum/metabolism , Smartphone , Thrombin/metabolism , Binding, Competitive , Fluorescence Resonance Energy Transfer , Humans , Models, Molecular , Protein Conformation , Serum/enzymology , Thrombin/chemistry
11.
Anal Chem ; 86(22): 11181-8, 2014 Nov 18.
Article in English | MEDLINE | ID: mdl-25361050

ABSTRACT

Protease expression, activity, and inhibition play crucial roles in a multitude of biological processes; however, these three aspects of their function are difficult for any one bioanalytical probe to measure. To help address this challenge, we report a multifunctional concentric Förster resonance energy transfer (FRET) configuration that combines two modes of biorecognition using aptamers and peptide substrates coassembled to a central semiconductor quantum dot (QD). The aptamer is sensitive to the concentration of protease and the peptide is sensitive to its hydrolytic activity. The role of the QD is to serve as a nanoscale scaffold and initial donor for energy transfer with both Cyanine 3 (Cy3) and Alexa Fluor 647 (A647) fluorescent dyes associated with the aptamer and peptide, respectively. Using thrombin as a model protease, we show that a ratiometric analysis of the emission from the QD, Cy3, and A647 permits discrimination between thrombin and thrombin-like activity, and distinguishes between active, reversibly inhibited, and irreversibly inhibited thrombin. Reliable quantitative results were obtained from a kinetic analysis of the changes in FRET. This concentric FRET format, which capitalizes on both the physical and optical properties of QDs, should be adaptable to other protease targets for which both peptide substrates and binding aptamers are known. It is thus expected to become valuable a tool for the real-time analysis of protease activity and regulation.


Subject(s)
Fluorescence Resonance Energy Transfer , Peptide Hydrolases/analysis , Peptide Hydrolases/metabolism , Quantum Dots , Aptamers, Nucleotide/chemistry , Enzyme Activation , Fluorescent Dyes/chemistry , Peptides/chemistry , Semiconductors
12.
ACS Appl Mater Interfaces ; 6(16): 13600-6, 2014 Aug 27.
Article in English | MEDLINE | ID: mdl-25090028

ABSTRACT

Targeted drug delivery using functional nanoparticles has provided new strategies for improving therapeutic efficacy while concurrently minimizing toxicity. Photodynamic therapy is an approach that offers control of drug delivery by use of an external photon source to allow active therapeutic release to a target area. Upconverting nanoparticles (UCNPs) have potential to operate as integral components of photodynamic therapeutic platforms based on the resonant absorption of near-infrared (NIR) radiation and emission at shorter wavelengths. NIR radiation is minimally absorbed and scattered by biological tissues, and the NIR excitation of UCNPs can generate anti-Stokes emission in the ultraviolet-visible wavelength range at intensities that can be used to trigger cleavage of bonds linking therapeutics at the nanoparticle interface. Herein, we describe an investigation of photocleavage at the surface of UCNPs to release the chemotherapeutic 5-fluorouracil (5-FU). Core-shell UCNPs composed of a ß-NaYF4: 4.95% Yb, 0.08% Tm core and a ß-NaYF4 shell were coated with o-phosphorylethanolamine ligands and coupled to an o-nitrobenzyl (ONB) derivative of 5-FU. NIR excitation of the UCNPs resulted in photoluminescence (PL) emission bands centered at 365, 455, and 485 nm. The UV-blue PL was in resonance with the absorption band of the ONB-FU derivative resulting in photocleavage and subsequent release of the 5-FU drug from the UCNPs for these in vitro studies. The release of 5-FU was complete in <14 min using a NIR laser source centered at 980 nm that operated at a power of <100 mW. The efficiency of triggered release was as high as 77% of the total ONB-FU conjugate, while the rate of drug release could be tuned with the laser power output. This work provides an important first step in the development of a UCNP platform capable of targeted chemotherapy.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Liberation , Infrared Rays , Nanoparticles/chemistry , Fluorides/chemistry , Fluorouracil/pharmacology , Luminescence , Prodrugs/pharmacology , Solubility , Ultraviolet Rays , Water/chemistry , Yttrium/chemistry
13.
Methods Mol Biol ; 1199: 215-39, 2014.
Article in English | MEDLINE | ID: mdl-25103812

ABSTRACT

An important challenge in biology is the development of probes for visualizing and quantitatively tracking enzyme activity. Proteases are an important class of enzyme with value as both diagnostic and therapeutic targets. In this chapter, we describe the preparation of quantum dot (QD)-peptide substrate conjugates as probes for measuring proteolytic activity. QDs have several highly advantageous optical properties that make these materials especially well suited for applications in bioanalysis and bioimaging. Further, peptide substrates for proteases can be controllably self-assembled to QDs and this capability, in combination with Förster resonance energy transfer (FRET), enables the design of quantitative in vitro assays capable of directly reporting on proteolytic activity. We present a detailed method for the preparation, calibration, and application of such QD probes, along with methods of analysis to generate progress curves for the proteolytic digestion of substrate. Representative data are illustrated for two different proteases and two different QD-fluorescent dye FRET pairs. The general methodology is likely to be applicable with other hydrolytic enzymes in addition to proteases. Overall, the method is straightforward to implement with commercially available materials and does not require specialized expertise.


Subject(s)
Fluorescence Resonance Energy Transfer/methods , Fluorescent Dyes/chemistry , Peptides/chemistry , Peptides/metabolism , Proteolysis , Quantum Dots/chemistry , Amino Acid Sequence , Animals , Calibration , Cattle , Glutathione/chemistry , Kinetics , Molecular Sequence Data , Peptide Hydrolases/metabolism , Thioctic Acid/analogs & derivatives , Thioctic Acid/chemistry
14.
Anal Chem ; 86(6): 3195-202, 2014 Mar 18.
Article in English | MEDLINE | ID: mdl-24571675

ABSTRACT

Semiconductor quantum dot (QD) bioconjugates, with their unique and highly advantageous physicochemical and optical properties, have been extensively utilized as probes for bioanalysis and continue to generate widespread interest for these applications. An important consideration for expanding the utility of QDs and making their use routine is to make assays with QDs more accessible for laboratories that do not specialize in nanomaterials. Here, we show that digital color imaging of QD photoluminescence (PL) with a smartphone camera is a viable, easily accessible readout platform for quantitative, multiplexed, and real-time bioanalyses. Red-, green-, and blue-emitting CdSeS/ZnS QDs were conjugated with peptides that were labeled with a deep-red fluorescent dye, Alexa Fluor 647, and the dark quenchers, QSY9 and QSY35, respectively, to generate Förster resonance energy transfer (FRET) pairs sensitive to proteolytic activity. Changes in QD PL caused by the activity of picomolar to nanomolar concentrations of protease were detected as changes in the red-green-blue (RGB) channel intensities in digital color images. Importantly, measurements of replicate samples made with smartphone imaging and a sophisticated fluorescence plate reader yielded the same quantitative results, including initial proteolytic rates and specificity constants. Homogeneous two-plex and three-plex assays for the activity of trypsin, chymotrypsin, and enterokinase were demonstrated with RGB imaging. Given the ubiquity of smartphones, this work largely removes any instrumental impediments to the adoption of QDs as routine tools for bioanalysis in research laboratories and is a critical step toward the use of QDs for point-of-care diagnostics. This work also adds to the growing utility of smartphones in analytical methods by enabling multiplexed fluorimetric assays within a single sample volume and across multiple samples in parallel.


Subject(s)
Cell Phone , Quantum Dots , Amino Acid Sequence , Fluorescence Resonance Energy Transfer , Molecular Sequence Data , Proteolysis
15.
Anal Chem ; 85(18): 8817-25, 2013 Sep 17.
Article in English | MEDLINE | ID: mdl-23980758

ABSTRACT

Paper-based assays are a promising diagnostic format for point-of-care applications, field deployment, and other low-resource settings. To date, the majority of efforts to integrate nanomaterials with paper-based assays have utilized gold nanoparticles. Here, we show that semiconductor quantum dots (QDs), in combination with Förster resonance energy transfer (FRET), are also suitable nanomaterials for developing paper-based assays. Paper fibers were chemically modified with thiol ligands to immobilize CdSeS/ZnS QDs, the QDs were self-assembled with dye-labeled peptides to generate efficient FRET, and steady-state and fluorescence lifetime imaging microscopy (FLIM) were used for characterization. Peptides were selected as substrates for three different proteases and a series of kinetic assays for proteolytic activity was carried out, including multiplexed assays and pro-enzyme activation assays. Quantitative results were obtained within 5-60 min at levels as low as 1-2 nM of protease. These assays were possible using simple optical readout platforms that did not negate the low cost, ease of use, and overall accessibility advantages of paper-based assays. A violet light-emitting diode (LED) excitation source and color imaging with either a digital camera, consumer webcam, or smartphone camera were sufficient for analysis on the basis of a red/green color intensity ratio. At most, a universal serial bus (USB) connection to a computer was required and the instrumentation cost orders of magnitude less than that typically utilized for in vitro bioanalyses with QDs. This work demonstrates that QDs are valuable probes for developing a new generation of paper-based diagnostics.


Subject(s)
Chymotrypsin/analysis , Fluorescence Resonance Energy Transfer/methods , Paper , Quantum Dots/chemistry , Trypsin/analysis , Amino Acid Sequence , Chymotrypsin/chemistry , Chymotrypsin/genetics , Molecular Sequence Data , Protein Structure, Secondary , Proteolysis , Trypsin/chemistry , Trypsin/genetics
16.
Appl Spectrosc ; 67(3): 215-52, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23452487

ABSTRACT

Semiconductor quantum dots (QDs) are brightly luminescent nanoparticles that have found numerous applications in bioanalysis and bioimaging. In this review, we highlight recent developments in these areas in the context of specific methods for fluorescence spectroscopy and imaging. Following a primer on the structure, properties, and biofunctionalization of QDs, we describe select examples of how QDs have been used in combination with steady-state or time-resolved spectroscopic techniques to develop a variety of assays, bioprobes, and biosensors that function via changes in QD photoluminescence intensity, polarization, or lifetime. Some special attention is paid to the use of Förster resonance energy transfer-type methods in bioanalysis, including those based on bioluminescence and chemiluminescence. Direct chemiluminescence, electrochemiluminescence, and charge transfer quenching are similarly discussed. We further describe the combination of QDs and flow cytometry, including traditional cellular analyses and spectrally encoded barcode-based assay technologies, before turning our attention to enhanced fluorescence techniques based on photonic crystals or plasmon coupling. Finally, we survey the use of QDs across different platforms for biological fluorescence imaging, including epifluorescence, confocal, and two-photon excitation microscopy; single particle tracking and fluorescence correlation spectroscopy; super-resolution imaging; near-field scanning optical microscopy; and fluorescence lifetime imaging microscopy. In each of the above-mentioned platforms, QDs provide the brightness needed for highly sensitive detection, the photostability needed for tracking dynamic processes, or the multiplexing capacity needed to elucidate complex systems. There is a clear synergy between advances in QD materials and spectroscopy and imaging techniques, as both must be applied in concert to achieve their full potential.


Subject(s)
Luminescent Agents/analysis , Microscopy, Fluorescence/methods , Optical Imaging/methods , Quantum Dots , Spectrometry, Fluorescence/methods , Animals , Electrochemical Techniques/instrumentation , Electrochemical Techniques/methods , Equipment Design , Flow Cytometry/instrumentation , Flow Cytometry/methods , Humans , Microscopy, Confocal/instrumentation , Microscopy, Confocal/methods , Microscopy, Fluorescence/instrumentation , Models, Molecular , Optical Imaging/instrumentation , Spectrometry, Fluorescence/instrumentation
17.
Langmuir ; 29(3): 977-87, 2013 Jan 22.
Article in English | MEDLINE | ID: mdl-23298406

ABSTRACT

Methods have been developed for the solid-phase detection of nucleic acids using mixed films of quantum dots (QDs) and oligonucleotide probes in microtiter plates. Polystyrene microwells were functionalized with multidentate imidazole ligands to immobilize QDs. Oligonucleotide hybridization was transduced using QDs as donors in fluorescence resonance energy transfer (FRET). One detection channel paired green-emitting QD donors with Cy3 acceptors and served as an internal standard. A second detection channel paired red-emitting QDs with Alexa Fluor 647 acceptors and served as the primary detection channel. A selective assay for multiple targets was demonstrated using a 96-well plate format, which combined the advantages of two-plex QD-FRET with the high-throughput capability and convenience of microtiter plates. The assay had excellent resistance to the nonspecific adsorption of DNA and discriminated between fully complementary and single base-pair mismatched sequences with a contrast ratio >2. Under optimal conditions for a single color (green QD) assay format, the limit of detection (LOD) was 4 nM, and the dynamic range was from 20 to 300 nM. In a two-color assay, the detection channel (red QD) exhibited linear response between 4 and 100 nM and a LOD of 4 nM.


Subject(s)
Fluorescence Resonance Energy Transfer/instrumentation , Fluorescence Resonance Energy Transfer/methods , Microarray Analysis/instrumentation , Nucleic Acids/analysis , Oligonucleotide Probes/chemistry , Quantum Dots , Carbocyanines/chemistry , Imidazoles/chemistry , Ligands , Nucleic Acid Hybridization , Polystyrenes/chemistry
18.
Langmuir ; 28(39): 13943-51, 2012 Oct 02.
Article in English | MEDLINE | ID: mdl-22992133

ABSTRACT

A facile approach for modification of solid substrates with multidentate imidazole ligands was developed for immobilization of high densities of quantum dots (QDs) that were capped with hydrophilic thiol-based ligands, and for immobilization of noble metal nanoparticles. Imidazole polymer was synthesized using poly(acrylic acid) as a backbone, and grafted on amine functionalized substrate in a two-step approach. The polymer-modified surface was characterized using ellipsometry, water contact angle, and X-ray photoelectron spectroscopy. Fluorescence spectroscopy and scanning electron microscopy were used to evaluate nanoparticle immobilization. Homogeneous, high density (ca. 5 × 10(11) cm(-2)) QD films formed via self-assembly were obtained within 4-6 h. Similarly, the imidazole polymer was also shown to be effective for immobilization of gold nanoparticles as a uniform film. By making use of the pH-sensitive affinity of the imidazole rings to zinc on the surface of QDs, it was possible to achieve regeneration of functional ligands suitable for subsequent immobilization of new QDs. Immobilized QDs were used as a platform for bioconjugation with oligonucleotides and peptides. The transduction of nucleic acid hybridization and enzyme activity using QDs as energy donors in interfacial fluorescence resonance energy transfer (FRET) indicated that the immobilization strategy preserved the functional properties of the QDs. The multidentate imidazole ligands used for QD immobilization offer the highest denticity of binding in comparison to the currently available approaches without compromise in their optical properties and ability to interact with biomolecules in solution.


Subject(s)
Biosensing Techniques , Gold/chemistry , Imidazoles/chemistry , Metal Nanoparticles/chemistry , Quantum Dots , Acrylic Resins/chemistry , Imidazoles/chemical synthesis , Ligands , Molecular Structure , Particle Size , Surface Properties
19.
Anal Chim Acta ; 706(1): 8-24, 2011 Nov 07.
Article in English | MEDLINE | ID: mdl-21995909

ABSTRACT

Localized surface plasmon resonance (LSPR) is an optical phenomena generated by light when it interacts with conductive nanoparticles (NPs) that are smaller than the incident wavelength. As in surface plasmon resonance, the electric field of incident light can be deposited to collectively excite electrons of a conduction band, with the result being coherent localized plasmon oscillations with a resonant frequency that strongly depends on the composition, size, geometry, dielectric environment and separation distance of NPs. This review serves to describe the physical theory of LSPR formation at the surface of nanostructures, and the potential for this optical technology to serve as a basis for the development bioassays and biosensing of high sensitivity. The benefits and challenges associated with various experimental designs of nanoparticles and detection systems, as well as creative approaches that have been developed to improve sensitivity and limits of detection are highlighted using examples from the literature.


Subject(s)
Biosensing Techniques , Nanostructures/chemistry , Surface Plasmon Resonance , DNA/analysis , Nucleic Acid Hybridization , Proteins/analysis , Spectrum Analysis, Raman , Surface Properties
20.
Anal Bioanal Chem ; 399(7): 2331-42, 2011 Mar.
Article in English | MEDLINE | ID: mdl-20658228

ABSTRACT

Quantum dots (QDs) have shown promise as imaging agents in cancer, heart disease, and gene therapy research. This review focuses on the design of QDs, and modification using peptides and proteins for mediated targeting of tissues for fluorescence imaging of tumors in vivo. Recent examples from the literature are used to illustrate the potential of QDs as effective imaging agents. The distribution and ultimate fate of QDs in vivo is considered, and considerations of designs that minimize potential toxicity are presented.


Subject(s)
Contrast Media/chemistry , Diagnostic Imaging/instrumentation , Nanomedicine/methods , Quantum Dots , Animals , Diagnostic Imaging/methods , Fluorescence , Humans , Nanomedicine/trends , Neoplasms/diagnosis , Particle Size , Peptides/chemistry , Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...