Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Org Lett ; 3(11): 1689-92, 2001 May 31.
Article in English | MEDLINE | ID: mdl-11405687

ABSTRACT

Recent efforts in our laboratories have resulted in a synthetic approach toward C2'-alkylated K252a analogues via extension of a K252a cyclofuranosylation strategy. The bis-indole-N-glycosidic coupling of 6-N-(3,4-dimethoxybenzyl)-staurosporinone (21) with a number of highly functionalized carbohydrates has given access to previously unattainable, biologically relevant analogues.


Subject(s)
Carbazoles/chemical synthesis , Enzyme Inhibitors/chemical synthesis , Protein Kinase C/antagonists & inhibitors , Alkylation , Indicators and Reagents , Indole Alkaloids , Molecular Conformation , Stereoisomerism
2.
Nature ; 407(6802): 395-401, 2000 Sep 21.
Article in English | MEDLINE | ID: mdl-11014197

ABSTRACT

Protein kinases have proved to be largely resistant to the design of highly specific inhibitors, even with the aid of combinatorial chemistry. The lack of these reagents has complicated efforts to assign specific signalling roles to individual kinases. Here we describe a chemical genetic strategy for sensitizing protein kinases to cell-permeable molecules that do not inhibit wild-type kinases. From two inhibitor scaffolds, we have identified potent and selective inhibitors for sensitized kinases from five distinct subfamilies. Tyrosine and serine/threonine kinases are equally amenable to this approach. We have analysed a budding yeast strain carrying an inhibitor-sensitive form of the cyclin-dependent kinase Cdc28 (CDK1) in place of the wild-type protein. Specific inhibition of Cdc28 in vivo caused a pre-mitotic cell-cycle arrest that is distinct from the G1 arrest typically observed in temperature-sensitive cdc28 mutants. The mutation that confers inhibitor-sensitivity is easily identifiable from primary sequence alignments. Thus, this approach can be used to systematically generate conditional alleles of protein kinases, allowing for rapid functional characterization of members of this important gene family.


Subject(s)
Alleles , Enzyme Inhibitors/pharmacology , Protein Kinase Inhibitors , Protein Kinases/genetics , Saccharomyces cerevisiae Proteins , Amino Acid Sequence , CDC28 Protein Kinase, S cerevisiae/antagonists & inhibitors , CDC28 Protein Kinase, S cerevisiae/genetics , Carbazoles/pharmacology , Cell Cycle , Fungal Proteins/antagonists & inhibitors , Gene Expression , Humans , Indole Alkaloids , Mitogen-Activated Protein Kinases/antagonists & inhibitors , Molecular Sequence Data , Mutagenesis , Protein Structure, Tertiary , Proteins/pharmacology , Saccharomyces cerevisiae , Sequence Homology, Amino Acid , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...