Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 249
Filter
2.
PLoS Biol ; 22(1): e3002462, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38289969

ABSTRACT

Mutations in the gene encoding Cu-Zn superoxide dismutase 1 (SOD1) cause a subset of familial amyotrophic lateral sclerosis (fALS) cases. A shared effect of these mutations is that SOD1, which is normally a stable dimer, dissociates into toxic monomers that seed toxic aggregates. Considerable research effort has been devoted to developing compounds that stabilize the dimer of fALS SOD1 variants, but unfortunately, this has not yet resulted in a treatment. We hypothesized that cyclic thiosulfinate cross-linkers, which selectively target a rare, 2 cysteine-containing motif, can stabilize fALS-causing SOD1 variants in vivo. We created a library of chemically diverse cyclic thiosulfinates and determined structure-cross-linking-activity relationships. A pre-lead compound, "S-XL6," was selected based upon its cross-linking rate and drug-like properties. Co-crystallographic structure clearly establishes the binding of S-XL6 at Cys 111 bridging the monomers and stabilizing the SOD1 dimer. Biophysical studies reveal that the degree of stabilization afforded by S-XL6 (up to 24°C) is unprecedented for fALS, and to our knowledge, for any protein target of any kinetic stabilizer. Gene silencing and protein degrading therapeutic approaches require careful dose titration to balance the benefit of diminished fALS SOD1 expression with the toxic loss-of-enzymatic function. We show that S-XL6 does not share this liability because it rescues the activity of fALS SOD1 variants. No pharmacological agent has been proven to bind to SOD1 in vivo. Here, using a fALS mouse model, we demonstrate oral bioavailability; rapid engagement of SOD1G93A by S-XL6 that increases SOD1G93A's in vivo half-life; and that S-XL6 crosses the blood-brain barrier. S-XL6 demonstrated a degree of selectivity by avoiding off-target binding to plasma proteins. Taken together, our results indicate that cyclic thiosulfinate-mediated SOD1 stabilization should receive further attention as a potential therapeutic approach for fALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Animals , Mice , Amyotrophic Lateral Sclerosis/drug therapy , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Cysteine/genetics , Mutation , Superoxide Dismutase/genetics , Superoxide Dismutase/chemistry , Superoxide Dismutase/metabolism , Superoxide Dismutase-1/genetics
4.
Proc Natl Acad Sci U S A ; 120(4): e2212180120, 2023 01 24.
Article in English | MEDLINE | ID: mdl-36652482

ABSTRACT

SORL1, the gene encoding the large multidomain SORLA protein, has emerged as only the fourth gene that when mutated can by itself cause Alzheimer's disease (AD), and as a gene reliably linked to both the early- and late-onset forms of the disease. SORLA is known to interact with the endosomal trafficking regulatory complex called retromer in regulating the recycling of endosomal cargo, including the amyloid precursor protein (APP) and the glutamate receptor GluA1. Nevertheless, SORLA's precise structural-functional relationship in endosomal recycling tubules remains unknown. Here, we address these outstanding questions by relying on crystallographic and artificial-intelligence evidence to generate a structural model for how SORLA folds and fits into retromer-positive endosomal tubules, where it is found to dimerize via both SORLA's fibronectin-type-III (3Fn)- and VPS10p-domains. Moreover, we identify a SORLA fragment comprising the 3Fn-, transmembrane, and cytoplasmic domains that has the capacity to form a dimer, and to enhance retromer-dependent recycling of APP by decreasing its amyloidogenic processing. Collectively, these observations generate a model for how SORLA dimer (and possibly polymer) formation can function in stabilizing and enhancing retromer function at endosome tubules. These findings can inform investigation of the many AD-associated SORL1 variants for evidence of pathogenicity and can guide discovery of novel drugs for the disease.


Subject(s)
Alzheimer Disease , LDL-Receptor Related Proteins , Membrane Transport Proteins , Humans , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Dimerization , LDL-Receptor Related Proteins/metabolism , Membrane Transport Proteins/metabolism , Protein Transport
5.
Nat Methods ; 19(12): 1612-1621, 2022 12.
Article in English | MEDLINE | ID: mdl-36344833

ABSTRACT

We report the rational engineering of a remarkably stable yellow fluorescent protein (YFP), 'hyperfolder YFP' (hfYFP), that withstands chaotropic conditions that denature most biological structures within seconds, including superfolder green fluorescent protein (GFP). hfYFP contains no cysteines, is chloride insensitive and tolerates aldehyde and osmium tetroxide fixation better than common fluorescent proteins, enabling its use in expansion and electron microscopies. We solved crystal structures of hfYFP (to 1.7-Å resolution), a monomeric variant, monomeric hyperfolder YFP (1.6 Å) and an mGreenLantern mutant (1.2 Å), and then rationally engineered highly stable 405-nm-excitable GFPs, large Stokes shift (LSS) monomeric GFP (LSSmGFP) and LSSA12 from these structures. Lastly, we directly exploited the chemical stability of hfYFP and LSSmGFP by devising a fluorescence-assisted protein purification strategy enabling all steps of denaturing affinity chromatography to be visualized using ultraviolet or blue light. hfYFP and LSSmGFP represent a new generation of robustly stable fluorescent proteins developed for advanced biotechnological applications.


Subject(s)
Fluorescence Resonance Energy Transfer , Microscopy , Luminescent Proteins/metabolism , Green Fluorescent Proteins/metabolism , Fluorescence Resonance Energy Transfer/methods , Light
6.
Commun Biol ; 5(1): 1042, 2022 09 30.
Article in English | MEDLINE | ID: mdl-36180783

ABSTRACT

The human (h) CEACAM1 GFCC' face serves as a binding site for homophilic and heterophilic interactions with various microbial and host ligands. hCEACAM1 has also been observed to form oligomers and micro-clusters on the cell surface which are thought to regulate hCEACAM1-mediated signaling. However, the structural basis for hCEACAM1 higher-order oligomerization is currently unknown. To understand this, we report a hCEACAM1 IgV oligomer crystal structure which shows how GFCC' face-mediated homodimerization enables highly flexible ABED face interactions to arise. Structural modeling and nuclear magnetic resonance (NMR) studies predict that such oligomerization is not impeded by the presence of carbohydrate side-chain modifications. In addition, using UV spectroscopy and NMR studies, we show that oligomerization is further facilitated by the presence of a conserved metal ion (Zn++ or Ni++) binding site on the G strand of the FG loop. Together these studies provide biophysical insights on how GFCC' and ABED face interactions together with metal ion binding may facilitate hCEACAM1 oligomerization beyond dimerization.


Subject(s)
Antigens, CD , Cell Adhesion Molecules , Antigens, CD/metabolism , Binding Sites , Carbohydrates , Cell Adhesion Molecules/metabolism , Humans
7.
Cell ; 185(21): 3849-3853, 2022 10 13.
Article in English | MEDLINE | ID: mdl-36174580

ABSTRACT

The 2022 Lasker-DeBakey Clinical Medical Research Award is presented to Yuk Ming Dennis Lo of the Chinese University of Hong Kong for the discovery of fetal DNA in maternal blood, leading to development of noninvasive prenatal testing for Down syndrome.


Subject(s)
Awards and Prizes , Biomedical Research , Midwifery , DNA , Female , Fetus , Humans , Pregnancy
8.
Elife ; 112022 07 15.
Article in English | MEDLINE | ID: mdl-35838234

ABSTRACT

The supraspinal connectome is essential for normal behavior and homeostasis and consists of numerous sensory, motor, and autonomic projections from brain to spinal cord. Study of supraspinal control and its restoration after damage has focused mostly on a handful of major populations that carry motor commands, with only limited consideration of dozens more that provide autonomic or crucial motor modulation. Here, we assemble an experimental workflow to rapidly profile the entire supraspinal mesoconnectome in adult mice and disseminate the output in a web-based resource. Optimized viral labeling, 3D imaging, and registration to a mouse digital neuroanatomical atlas assigned tens of thousands of supraspinal neurons to 69 identified regions. We demonstrate the ability of this approach to clarify essential points of topographic mapping between spinal levels, measure population-specific sensitivity to spinal injury, and test the relationships between region-specific neuronal sparing and variability in functional recovery. This work will spur progress by broadening understanding of essential but understudied supraspinal populations.


Subject(s)
Connectome , Spinal Cord Injuries , Spinal Injuries , Animals , Brain , Mice , Recovery of Function , Spinal Cord
9.
Trends Neurosci ; 45(8): 608-620, 2022 08.
Article in English | MEDLINE | ID: mdl-35667922

ABSTRACT

Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder. Among its pathologies, progressive loss of dopaminergic (DA) neurons in the substantia nigra is characteristic and contributes to many of the most severe symptoms of PD. Recent advances in induced pluripotent stem cell (iPSC) technology have made it possible to generate patient-derived DA neuronal cell culture and organoid models of PD. These models have contributed to understanding disease mechanisms and the identification of novel targets and therapeutic candidates. Still needed are better ways to model the age-related aspects of PD, as well as a deeper understanding of the interactions among disease-modifying genes and between genetic and environmental contributions to the etiology and progression of PD.


Subject(s)
Induced Pluripotent Stem Cells , Parkinson Disease , Dopaminergic Neurons , Humans , Induced Pluripotent Stem Cells/pathology , Parkinson Disease/genetics , alpha-Synuclein/genetics
10.
Science ; 377(6601): 31-32, 2022 07.
Article in English | MEDLINE | ID: mdl-35771902

ABSTRACT

Investigating phase separation in neurodegeneration highlights evidence needed for causation.

11.
Cell Rep ; 38(3): 110262, 2022 01 18.
Article in English | MEDLINE | ID: mdl-35045281

ABSTRACT

Disruption of retromer-dependent endosomal trafficking is considered pathogenic in late-onset Alzheimer's disease (AD). Here, to investigate this disruption in the intact brain, we turn to a genetic mouse model where the retromer core protein VPS35 is depleted in hippocampal neurons, and then we replete VPS35 using an optimized viral vector protocol. The VPS35 depletion-repletion studies strengthen the causal link between the neuronal retromer and AD-associated neuronal phenotypes, including the acceleration of amyloid precursor protein cleavage and the loss of synaptic glutamate receptors. Moreover, the studies show that the neuronal retromer can regulate a distinct, dystrophic, microglia morphology, phenotypic of hippocampal microglia in AD. Finally, the neuronal and, in part, the microglia responses to VPS35 depletion were found to occur independent of tau. Showing that the neuronal retromer can regulate AD-associated pathologies in two of AD's principal cell types strengthens the link, and clarifies the mechanism, between endosomal trafficking and late-onset sporadic AD.


Subject(s)
Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Microglia/pathology , Neurons/pathology , Vesicular Transport Proteins/metabolism , Animals , Endosomes/metabolism , Mice , Microglia/metabolism , Neurons/metabolism , Phenotype , Protein Transport/physiology
12.
Nat Immunol ; 23(1): 109-121, 2022 01.
Article in English | MEDLINE | ID: mdl-34937919

ABSTRACT

Anemia is a major comorbidity in aging, chronic kidney and inflammatory diseases, and hematologic malignancies. However, the transcriptomic networks governing hematopoietic differentiation in blood cell development remain incompletely defined. Here we report that the atypical kinase RIOK2 (right open reading frame kinase 2) is a master transcription factor (TF) that not only drives erythroid differentiation, but also simultaneously suppresses megakaryopoiesis and myelopoiesis in primary human stem and progenitor cells. Our study reveals the previously uncharacterized winged helix-turn-helix DNA-binding domain and two transactivation domains of RIOK2 that are critical to regulate key hematopoietic TFs GATA1, GATA2, SPI1, RUNX3 and KLF1. This establishes RIOK2 as an integral component of the transcriptional regulatory network governing human hematopoietic differentiation. Importantly, RIOK2 mRNA expression significantly correlates with these TFs and other hematopoietic genes in myelodysplastic syndromes, acute myeloid leukemia and chronic kidney disease. Further investigation of RIOK2-mediated transcriptional pathways should yield therapeutic approaches to correct defective hematopoiesis in hematologic disorders.


Subject(s)
Blood Cells/metabolism , Protein Serine-Threonine Kinases/metabolism , Amino Acid Sequence , Cell Differentiation/physiology , Cell Line, Tumor , Cells, Cultured , Erythropoiesis/physiology , Gene Expression Regulation/physiology , HEK293 Cells , Hematopoietic Stem Cells/metabolism , Humans , K562 Cells , Leukemia, Myeloid, Acute/metabolism , Myelodysplastic Syndromes/metabolism , Myelopoiesis/physiology , Transcription Factors/metabolism , Transcription, Genetic/physiology
13.
Cell ; 184(21): 5275-5278, 2021 10 14.
Article in English | MEDLINE | ID: mdl-34562359

ABSTRACT

The 2021 Lasker∼Koshland Special Achievement Award will be presented to David Baltimore for an extraordinary career that has personified the combination of outstanding biomedical research and exemplary scientific statesmanship.


Subject(s)
Awards and Prizes , Biomedical Research/history , Animals , History, 20th Century , History, 21st Century , Humans , NF-kappa B/metabolism , RNA-Directed DNA Polymerase/metabolism
14.
Biology (Basel) ; 10(8)2021 Aug 16.
Article in English | MEDLINE | ID: mdl-34440010

ABSTRACT

On 26 July 2020, our colleague and friend Dr [...].

15.
Parkinsonism Relat Disord ; 89: 63-72, 2021 08.
Article in English | MEDLINE | ID: mdl-34229155

ABSTRACT

INTRODUCTION: Missense variants and multiplications of the alpha-synuclein gene (SNCA) are established as rare causes of autosomal dominant forms of Parkinson's Disease (PD). METHODS: Two families of Turkish origins with PD were studied; the SNCA coding region was analyzed by Sanger sequencing, and by whole exome sequencing (WES) in the index patient of the first and the second family, respectively. Co-segregation studies and haplotype analysis across the SNCA locus were carried out. Functional studies included in vitro thioflavin-T aggregation assay and in silico structural modelling of the alpha-synuclein (α-syn) protein. RESULTS: We identified a novel heterozygous SNCA variant, c.215C > T (p.Thr72Met), segregating with PD in a total of four members in the two families. A shared haplotype across the SNCA locus was found among variant carriers, suggestive of a common ancestor. We next showed that the Thr72Met α-syn displays enhanced aggregation in-vitro, compared to the wild-type species. In silico analysis of a tetrameric α-syn structural model revealed that Threonine 72 lies in the tetrameric interface, and substitution with the much larger methionine residue could potentially destabilize the tetramer. CONCLUSION: We present clinical, genetic, and functional data supporting a causative role of the SNCA c.215C > T (p.Thr72Met) variant in familial PD. Testing for this variant in patients with PD, especially of Turkish origin, might detect additional carriers. Further functional analyses might offer new insights into the shared biochemical properties of the PD-causing SNCA missense variants, and how they lead to neurodegeneration.


Subject(s)
Parkinson Disease/genetics , Parkinson Disease/physiopathology , alpha-Synuclein/genetics , Female , Haplotypes , Humans , Middle Aged , Pedigree , Turkey
16.
Commun Biol ; 4(1): 360, 2021 03 19.
Article in English | MEDLINE | ID: mdl-33742094

ABSTRACT

Human (h) carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) function depends upon IgV-mediated homodimerization or heterodimerization with host ligands, including hCEACAM5, hTIM-3, PD-1, and a variety of microbial pathogens. However, there is little structural information available on how hCEACAM1 transitions between monomeric and dimeric states which in the latter case is critical for initiating hCEACAM1 activities. We therefore mutated residues within the hCEACAM1 IgV GFCC' face including V39, I91, N97, and E99 and examined hCEACAM1 IgV monomer-homodimer exchange using differential scanning fluorimetry, multi-angle light scattering, X-ray crystallography and/or nuclear magnetic resonance. From these studies, we describe hCEACAM1 homodimeric, monomeric and transition states at atomic resolution and its conformational behavior in solution through NMR assignment of the wildtype (WT) hCEACAM1 IgV dimer and N97A mutant monomer. These studies reveal the flexibility of the GFCC' face and its important role in governing the formation of hCEACAM1 dimers and selective heterodimers.


Subject(s)
Antigens, CD/metabolism , Cell Adhesion Molecules/metabolism , Antigens, CD/chemistry , Antigens, CD/genetics , Cell Adhesion Molecules/chemistry , Cell Adhesion Molecules/genetics , Crystallography, X-Ray , Dynamic Light Scattering , Fluorometry , Humans , Magnetic Resonance Spectroscopy , Mutation , Protein Conformation , Protein Multimerization , Structure-Activity Relationship
17.
EMBO Mol Med ; 13(1): e12354, 2021 01 11.
Article in English | MEDLINE | ID: mdl-33332765

ABSTRACT

Heterozygous de novo mutations in the neuronal protein Munc18-1 cause syndromic neurological symptoms, including severe epilepsy, intellectual disability, developmental delay, ataxia, and tremor. No disease-modifying therapy exists to treat these disorders, and while chemical chaperones have been shown to alleviate neuronal dysfunction caused by missense mutations in Munc18-1, their required high concentrations and potential toxicity necessitate a Munc18-1-targeted therapy. Munc18-1 is essential for neurotransmitter release, and mutations in Munc18-1 have been shown to cause neuronal dysfunction via aggregation and co-aggregation of the wild-type protein, reducing functional Munc18-1 levels well below hemizygous levels. Here, we identify two pharmacological chaperones via structure-based drug design, that bind to wild-type and mutant Munc18-1, and revert Munc18-1 aggregation and neuronal dysfunction in vitro and in vivo, providing the first targeted treatment strategy for these severe pediatric encephalopathies.


Subject(s)
Brain Diseases , Epilepsy , Ataxia/drug therapy , Ataxia/genetics , Child , Heterozygote , Humans , Munc18 Proteins/genetics
18.
Fac Rev ; 10: 79, 2021.
Article in English | MEDLINE | ID: mdl-35146496

ABSTRACT

Although much is known about the machinery that executes fundamental processes of gene expression in cells, much also remains to be learned about how that machinery works. A recent paper by O'Reilly et al. reports a major step forward in the direct visualization of central dogma processes at submolecular resolution inside bacterial cells frozen in a native state. The essential methodologies involved are cross-linking mass spectrometry (CLMS) and cryo-electron tomography (cryo-ET). In-cell CLMS provides in vivo protein interaction maps. Cryo-ET allows visualization of macromolecular complexes in their native environment. These methods have been integrated by O'Reilly et al. to describe a dynamic assembly in situ between a transcribing RNA polymerase (RNAP) and a translating ribosome - a complex known as the expressome - in the model bacterium Mycoplasma pneumoniae 1. With the application of improved data processing and classification capabilities, this approach has allowed unprecedented insights into the architecture of this molecular assembly line, confirming the existence of a physical link between RNAP and the ribosome and identifying the transcription factor NusA as the linking molecule, as well as making it possible to see the structural effects of drugs that inhibit either transcription or translation. The work provides a glimpse into the future of integrative structural cell biology and can serve as a roadmap for the study of other molecular machineries in their native context.

19.
Sci Transl Med ; 12(572)2020 12 02.
Article in English | MEDLINE | ID: mdl-33268506

ABSTRACT

A hub-and-spoke model with endosomal recycling as the hub can reconcile the pathogenic contribution of amyloid precursor protein to Alzheimer's disease.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Amyloid beta-Protein Precursor , Endosomes , Humans
20.
Proc Natl Acad Sci U S A ; 117(48): 30710-30721, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33208539

ABSTRACT

Although ubiquitous in biological studies, the enhanced green and yellow fluorescent proteins (EGFP and EYFP) were not specifically optimized for neuroscience, and their underwhelming brightness and slow expression in brain tissue limits the fidelity of dendritic spine analysis and other indispensable techniques for studying neurodevelopment and plasticity. We hypothesized that EGFP's low solubility in mammalian systems must limit the total fluorescence output of whole cells, and that improving folding efficiency could therefore translate into greater brightness of expressing neurons. By introducing rationally selected combinations of folding-enhancing mutations into GFP templates and screening for brightness and expression rate in human cells, we developed mGreenLantern, a fluorescent protein having up to sixfold greater brightness in cells than EGFP. mGreenLantern illuminates neurons in the mouse brain within 72 h, dramatically reducing lag time between viral transduction and imaging, while its high brightness improves detection of neuronal morphology using widefield, confocal, and two-photon microscopy. When virally expressed to projection neurons in vivo, mGreenLantern fluorescence developed four times faster than EYFP and highlighted long-range processes that were poorly detectable in EYFP-labeled cells. Additionally, mGreenLantern retains strong fluorescence after tissue clearing and expansion microscopy, thereby facilitating superresolution and whole-brain imaging without immunohistochemistry. mGreenLantern can directly replace EGFP/EYFP in diverse systems due to its compatibility with GFP filter sets, recognition by EGFP antibodies, and excellent performance in mouse, human, and bacterial cells. Our screening and rational engineering approach is broadly applicable and suggests that greater potential of fluorescent proteins, including biosensors, could be unlocked using a similar strategy.


Subject(s)
Gene Expression , Green Fluorescent Proteins/genetics , Molecular Imaging , Neurons/metabolism , Animals , Brain/metabolism , Fluorescent Antibody Technique , Genes, Reporter , Green Fluorescent Proteins/chemistry , Mice , Microscopy, Fluorescence , Molecular Imaging/methods , Mutation , Protein Stability , Proteolysis , Solubility , Spectrum Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...