Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38464230

ABSTRACT

Nephronophthisis (NPHP) and autosomal dominant Polycystic Kidney Disease (ADPKD) are two genetically distinct forms of Polycystic Kidney Disease (PKD), yet both diseases present with kidney cysts and a gradual decline in renal function. Prevailing dogma in PKD is that changes in kidney architecture account for the decline in kidney function, but the molecular/cellular basis of such coupling is unknown. To address this question, we induced a form of proteome reprogramming by deleting Fbxw7 encoding FBW7, the recognition receptor of the SCF FBW7 E3 ubiquitin ligase in different segments of the kidney tubular system. Deletion of Fbxw7 in the medulla led to a juvenile-adult NPHP-like phenotype, where the decline in renal function was due to SOX9-mediated interstitial fibrosis rather than cystogenesis. In contrast, the decline of renal function in ADPKD is coupled to cystic expansion via the abnormal accumulation of FBW7 in the proximal tubules and other cell types in the renal cortex. We propose that FBW7 functions at the apex of a protein network that determines renal function in ADPKD by sensing architectural changes induced by cystic expansion.

2.
Antioxidants (Basel) ; 12(8)2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37627580

ABSTRACT

Nrf2 is a transcription factor facilitating cells' resilience against redox and various other forms of stress. In the absence of stressors, KEAP1 and/or ßTrCP mediate the ubiquitination of Nrf2 and prevent Nrf2-dependent gene expression and detoxification. AMPK regulates cellular energy homeostasis and redox balance. Previous studies indicated a potential Nrf2-AMPK cooperativity. In line with this, our lab had previously identified three AMPK-dependent phosphorylation sites (S374/408/433) in Nrf2. Given their localization in or near the Neh6 domain, known to regulate ßTrCP-mediated degradation, we examined whether they may influence the ßTrCP-driven degradation of Nrf2. By employing expression plasmids for WT and triple mutant (TM)-Nrf2 (Nrf2S374/408/433→A), (co)immunoprecipitation, proximity ligation, protein half-life, knockdown, ubiquitination experiments, and qPCR in Keap1-null mouse embryonic fibroblasts, we show that TM-Nrf2S→A374/408/433 had enhanced stability due to impeded interaction with ßTrCP2 and reduced ubiquitination in comparison to WT-Nrf2. In addition, TM-Nrf2 elicited higher expression of the Nrf2 target gene Gclc, potentiated in the presence of a pharmacological AMPK activator. Overall, we propose that AMPK-dependent phospho-sites of Nrf2 can favor its ßTrCP2-mediated degradation and dampen the extent of Nrf2 target gene expression. Therefore, targeting AMPK might be able to diminish Nrf2-mediated responses in cells with overactive Nrf2 due to KEAP1 deficiency.

3.
Free Radic Biol Med ; 190: 75-93, 2022 09.
Article in English | MEDLINE | ID: mdl-35918013

ABSTRACT

NRF2 (Nuclear factor E2 p45-related factor 2) is a stress responsive transcription factor lending cells resilience against oxidative, xenobiotic, and also nutrient or proteotoxic insults. AMPK (AMP-activated kinase), considered as prime regulator of cellular energy homeostasis, not only tunes metabolism to provide the cell at any time with sufficient ATP or building blocks, but also controls redox balance and inflammation. Due to observed overlapping cellular responses upon AMPK or NRF2 activation and common stressors impinging on both AMPK and NRF2 signaling, it is plausible to assume that AMPK and NRF2 signaling may interdepend and cooperate to readjust cellular homeostasis. After a short introduction of the two players this narrative review paints the current picture on how AMPK and NRF2 signaling might interact on the molecular level, and highlights their possible crosstalk in selected examples of pathophysiology or bioactivity of drugs and phytochemicals.


Subject(s)
AMP-Activated Protein Kinases , NF-E2-Related Factor 2 , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Homeostasis , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Oxidation-Reduction , Oxidative Stress/physiology
4.
Commun Biol ; 4(1): 1066, 2021 09 13.
Article in English | MEDLINE | ID: mdl-34518642

ABSTRACT

Structural defects in primary cilia have robust effects in diverse tissues and systems. However, how disorders of ciliary length lead to functional outcomes are unknown. We examined the functional role of a ciliary length control mechanism of FBW7-mediated destruction of NDE1, in mesenchymal stem cell (MSC) differentiation. We show that FBW7 functions as a master regulator of both negative (NDE1) and positive (TALPID3) regulators of ciliogenesis, with an overall positive net effect on primary cilia formation, MSC differentiation to osteoblasts, and bone architecture. Deletion of Fbxw7 suppresses ciliation, Hedgehog activity, and differentiation, which are partially rescued in Fbxw7/Nde1-null cells. We also show that NDE1, despite suppressing ciliogenesis, promotes MSC differentiation by increasing the activity of the Hedgehog pathway by direct binding and enhancing GLI2 activity in a cilia-independent manner. We propose that FBW7 controls a protein-protein interaction network coupling ciliary structure and function, which is essential for stem cell differentiation.


Subject(s)
Cilia/metabolism , F-Box-WD Repeat-Containing Protein 7/genetics , Microtubule-Associated Proteins/genetics , Animals , Cell Differentiation , F-Box-WD Repeat-Containing Protein 7/metabolism , Male , Mice , Microtubule-Associated Proteins/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...