Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 13(1): e0190272, 2018.
Article in English | MEDLINE | ID: mdl-29324864

ABSTRACT

BACKGROUND: Primaquine (PQ) actively clears mature Plasmodium falciparum gametocytes but in glucose-6-phosphate dehydrogenase deficient (G6PDd) individuals can cause hemolysis. We assessed the safety of low-dose PQ in combination with artemether-lumefantrine (AL) or dihydroartemisinin-piperaquine (DP) in G6PDd African males with asymptomatic P. falciparum malaria. METHODS AND FINDINGS: In Burkina Faso, G6PDd adult males were randomized to treatment with AL alone (n = 10) or with PQ at 0.25 (n = 20) or 0.40 mg/kg (n = 20) dosage; G6PD-normal males received AL plus 0.25 (n = 10) or 0.40 mg/kg (n = 10) PQ. In The Gambia, G6PDd adult males and boys received DP alone (n = 10) or with 0.25 mg/kg PQ (n = 20); G6PD-normal males received DP plus 0.25 (n = 10) or 0.40 mg/kg (n = 10) PQ. The primary study endpoint was change in hemoglobin concentration during the 28-day follow-up. Cytochrome P-450 isoenzyme 2D6 (CYP2D6) metabolizer status, gametocyte carriage, haptoglobin, lactate dehydrogenase levels and reticulocyte counts were also determined. In Burkina Faso, the mean maximum absolute change in hemoglobin was -2.13 g/dL (95% confidence interval [CI], -2.78, -1.49) in G6PDd individuals randomized to 0.25 PQ mg/kg and -2.29 g/dL (95% CI, -2.79, -1.79) in those receiving 0.40 PQ mg/kg. In The Gambia, the mean maximum absolute change in hemoglobin concentration was -1.83 g/dL (95% CI, -2.19, -1.47) in G6PDd individuals receiving 0.25 PQ mg/kg. After adjustment for baseline concentrations, hemoglobin reductions in G6PDd individuals in Burkina Faso were more pronounced compared to those in G6PD-normal individuals receiving the same PQ doses (P = 0.062 and P = 0.022, respectively). Hemoglobin levels normalized during follow-up. Abnormal haptoglobin and lactate dehydrogenase levels provided additional evidence of mild transient hemolysis post-PQ. CONCLUSIONS: Single low-dose PQ in combination with AL and DP was associated with mild and transient reductions in hemoglobin. None of the study participants developed moderate or severe anemia; there were no severe adverse events. This indicates that single low-dose PQ is safe in G6PDd African males when used with artemisinin-based combination therapy. TRIAL REGISTRATION: Clinicaltrials.gov NCT02174900 Clinicaltrials.gov NCT02654730.


Subject(s)
Antimalarials/administration & dosage , Glucosephosphate Dehydrogenase/genetics , Malaria, Falciparum/drug therapy , Primaquine/administration & dosage , Adult , Antimalarials/adverse effects , Burkina Faso , Humans , Male , Primaquine/adverse effects , Young Adult
2.
Malar J ; 14: 169, 2015 Apr 18.
Article in English | MEDLINE | ID: mdl-25927675

ABSTRACT

BACKGROUND: A number of synthetic pantothenate derivatives, such as pantothenamides, are known to inhibit the growth of the human malaria parasite Plasmodium falciparum, by interfering with the parasite Coenzyme A (CoA) biosynthetic pathway. The clinical use of pantothenamides is limited by their sensitivity to breakdown by ubiquitous human pantetheinases of the vanin family. METHODS: A number of pantothenate derivatives (pantothenones) with potent and specific inhibitory activity against mammalian vanins were tested in a proliferation assay of asexual P. falciparum blood stages alone, and in combination with pantothenamides. RESULTS: The vanin inhibitors were found to protect pantothenamides against breakdown by plasma vanins, thereby preserving the in vitro anti-malarial activity. Moreover, some of the vanin inhibitors showed in vitro anti-malarial activity in the low micromolar range. The most potent antimalarial in this series of compounds (RR8), was found to compete with pantothenate in a combination proliferation assay. No correlation, however, was found between anti-vanin and anti-malarial activity, nor was pantetheinase activity detected in P. falciparum extracts. CONCLUSIONS: Growth inhibition is most likely due to competition with pantothenate, rather than pantetheinase inhibition. As vanin inhibitors of the pantothenone class are stable in biological fluids and are non-toxic to mammalian cells, they may represent novel pantothenate-based anti-malarials, either on their own or in combination with pantothenamides.


Subject(s)
Antimalarials/therapeutic use , Pantothenic Acid/therapeutic use , Antimalarials/chemistry , Antimalarials/pharmacology , Humans , Malaria, Falciparum/drug therapy , Pantothenic Acid/analogs & derivatives , Pantothenic Acid/pharmacology , Plasmodium falciparum/drug effects , Plasmodium falciparum/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...