Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
MethodsX ; 11: 102384, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37822675

ABSTRACT

Images from scanning electron microscopy (SEM) coupled with energy-dispersive X-ray spectroscopy (EDX) are informative and useful to understand the chemical composition and mixing state of solid materials. Positive matrix factorization (PMF) is a multivariate factor analysis technique that has been used in many applications, and the method is here applied to identify factors that can describe common features between elemental SEM-EDX maps. The procedures of converting both graphics and digital images to PMF input files are introduced, and the PMF analysis is exemplified with an open-access PMF program. A case study of oxygen carrier materials from oxygen carrier aided combustion is presented, and the results show that PMF successfully groups elements into factors, and the maps of these factors are visualized. The produced images provide further information on ash interactions and composition of distinct chemical layers. The method can handle all types of chemical maps and the method is not limited solely to SEM-EDX although these images have been used as an example. The main characteristics of the method are:•Adapting graphics and digital images ready for PMF analysis.•Conversion between 1-D and 2-D datasets allows visualization of common chemical maps of elements grouped in factors.•Handles all types of chemical mappings and large data sets.

2.
J Phys Chem Lett ; 14(26): 6151-6156, 2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37382368

ABSTRACT

Gas-particle interfaces are chemically active environments. This study investigates the reactivity of SO2 on NaCl surfaces using advanced experimental and theoretical methods with a NH4Cl substrate also examined for cation effects. Results show that NaCl surfaces rapidly convert to Na2SO4 with a new chlorine component when exposed to SO2 under low humidity. In contrast, NH4Cl surfaces have limited SO2 uptake and do not change significantly. Depth profiles reveal transformed layers and elemental ratios at the crystal surfaces. The chlorine species detected originates from Cl- expelled from the NaCl crystal structure, as determined by atomistic density functional theory calculations. Molecular dynamics simulations highlight the chemically active NaCl surface environment, driven by a strong interfacial electric field and the presence of sub-monolayer water coverage. These findings underscore the chemical activity of salt surfaces and the unexpected chemistry that arises from their interaction with interfacial water, even under very dry conditions.

3.
Environ Sci Atmos ; 2(2): 137-145, 2022 Mar 17.
Article in English | MEDLINE | ID: mdl-35419521

ABSTRACT

Salt aerosols play important roles in many processes related to atmospheric chemistry and the climate systems on both Earth and Mars. Complicated and still poorly understood processes occur on the salt surfaces when interacting with water vapor. In this study, ambient pressure X-ray photoelectron spectroscopy (APXPS) is used to characterize the surface chemical environment of Martian salt analogues originating from saline lakes and playas, as well as their responses to varying relative humidities. Generally, APXPS shows similar ionic compositions to those observed by ion chromatography (IC). However, XPS is a surface-sensitive method while IC is bulk-sensitive and differences are observed for species that preferentially partition to the surface or the bulk. Element-selective surface enhancement of Cl- is observed, likely caused by the presence of SO4 2-. In addition, Mg2+ is concentrated on the surface while Na+ is relatively depleted in the surface layer. Hence, the cations (Na+ and Mg2+) and the anions (Cl- and SO4 2-) show competitive correlations. At elevated relative humidity (RH), no major spectral changes were observed in the XPS results, except for the growth of an oxygen component originating from condensed H2O. Near-edge X-ray absorption fine structure (NEXAFS) measurements show that the magnesium and sodium spectra are sensitive to the presence of water, and the results imply that the surface is fully solvated already at RH = 5%. The surface solvation is also fully reversible as the RH is reduced. No major differences are observed between sample types and sample locations, indicating that the salts originated from saline lakes commonly have solvated surfaces under the environmental conditions on Earth.

4.
Science ; 374(6568): 747-752, 2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34735230

ABSTRACT

A surface-promoted sulfate-reducing ammonium oxidation reaction was discovered to spontaneously take place on common inorganic aerosol surfaces undergoing solvation. Several key intermediate species­including elemental sulfur (S0), bisulfide (HS−), nitrous acid (HONO), and aqueous ammonia [NH3(aq)]­were identified as reaction components associated with the solvation process. Depth profiles of relative species abundance showed the surface propensity of key species. The species assignments and depth profile features were supported by classical and first-principles molecular dynamics calculations, and a detailed mechanism was proposed to describe the processes that led to unexpected products during salt solvation. This discovery revealed chemistry that is distinctly linked to a solvating surface and has great potential to illuminate current puzzles within heterogeneous chemistry.

5.
J Phys Chem A ; 125(34): 7502-7519, 2021 Sep 02.
Article in English | MEDLINE | ID: mdl-34424704

ABSTRACT

The OH-initiated degradation of 2-amino-2-methyl-1-propanol [CH3C(NH2)(CH3)CH2OH, AMP] was investigated in a large atmospheric simulation chamber, employing time-resolved online high-resolution proton-transfer reaction-time-of-flight mass spectrometry (PTR-ToF-MS) and chemical analysis of aerosol online PTR-ToF-MS (CHARON-PTR-ToF-MS) instrumentation, and by theoretical calculations based on M06-2X/aug-cc-pVTZ quantum chemistry results and master equation modeling of the pivotal reaction steps. The quantum chemistry calculations reproduce the experimental rate coefficient of the AMP + OH reaction, aligning k(T) = 5.2 × 10-12 × exp (505/T) cm3 molecule-1 s-1 to the experimental value kexp,300K = 2.8 × 10-11 cm3 molecule-1 s-1. The theoretical calculations predict that the AMP + OH reaction proceeds via hydrogen abstraction from the -CH3 groups (5-10%), -CH2- group, (>70%) and -NH2 group (5-20%), whereas hydrogen abstraction from the -OH group can be disregarded under atmospheric conditions. A detailed mechanism for atmospheric AMP degradation was obtained as part of the theoretical study. The photo-oxidation experiments show 2-amino-2-methylpropanal [CH3C(NH2)(CH3)CHO] as the major gas-phase product and propan-2-imine [(CH3)2C═NH], 2-iminopropanol [(CH3)(CH2OH)C═NH], acetamide [CH3C(O)NH2], formaldehyde (CH2O), and nitramine 2-methyl-2-(nitroamino)-1-propanol [AMPNO2, CH3C(CH3)(NHNO2)CH2OH] as minor primary products; there is no experimental evidence of nitrosamine formation. The branching in the initial H abstraction by OH radicals was derived in analyses of the temporal gas-phase product profiles to be BCH3/BCH2/BNH2 = 6:70:24. Secondary photo-oxidation products and products resulting from particle and surface processing of the primary gas-phase products were also observed and quantified. All the photo-oxidation experiments were accompanied by extensive particle formation that was initiated by the reaction of AMP with nitric acid and that mainly consisted of this salt. Minor amounts of the gas-phase photo-oxidation products, including AMPNO2, were detected in the particles by CHARON-PTR-ToF-MS and GC×GC-NCD. Volatility measurements of laboratory-generated AMP nitrate nanoparticles gave ΔvapH = 80 ± 16 kJ mol-1 and an estimated vapor pressure of (1.3 ± 0.3) × 10-5 Pa at 298 K. The atmospheric chemistry of AMP is evaluated and a validated chemistry model for implementation in dispersion models is presented.

6.
J Phys Chem A ; 125(28): 6263-6272, 2021 Jul 22.
Article in English | MEDLINE | ID: mdl-34236877

ABSTRACT

Organic-organic interactions play important roles in secondary organic aerosol formation, but the interactions are complex and poorly understood. Here, we use environmental molecular beam experiments combined with molecular dynamics simulations to investigate the interactions between methanol and nopinone, as atmospheric organic proxies. In the experiments, methanol monomers and clusters are sent to collide with three types of surfaces, i.e., graphite, thin nopinone coating on graphite, and nopinone multilayer surfaces, at temperatures between 140 and 230 K. Methanol monomers are efficiently scattered from the graphite surface, whereas the scattering is substantially suppressed from nopinone surfaces. The thermal desorption from the three surfaces is similar, suggesting that all the surfaces have weak or similar influences on methanol desorption. All trapped methanol molecules completely desorb within a short experimental time scale at temperatures of 180 K and above. At lower temperatures, the desorption rate decreases, and a long experimental time scale is used to resolve the desorption, where three desorption components are identified. The fast component is beyond the experimental detection limit. The intermediate component exhibits multistep desorption character and has an activation energy of Ea = 0.18 ± 0.03 eV, in good agreement with simulation results. The slow desorption component is related to diffusion processes due to the weak temperature dependence. The molecular dynamics results show that upon collisions the methanol clusters shatter, and the shattered fragments quickly diffuse and recombine to clusters. Desorption involves a series of processes, including detaching from clusters and desorbing as monomers. At lower temperatures, methanol forms compact cluster structures while at higher temperatures, the methanol molecules form layered structures on the nopinone surface, which are visible in the simulation. Also, the simulation is used to study the liquid-liquid interaction, where the methanol clusters completely dissolve in liquid nopinone, showing ideal organic-organic mixing.

7.
Sci Total Environ ; 754: 142143, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-32898781

ABSTRACT

Modern small-scale biomass burners have been recognized as an important renewable energy source because of the economic and environmental advantages of biomass over fossil fuels. However, the characteristics of their gas and particulate emissions remain incompletely understood, and there is substantial uncertainty concerning their health and climate impacts. Here, we present online measurements conducted during the operation of a residential wood-burning boiler. The measured parameters include gas and particle concentrations, optical absorption and chemical characteristics of gases and particles. Positive matrix factorization was performed to analyze data from a high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) equipped with a filter inlet for gases and aerosols (FIGAERO). Six factors were identified and interpreted. Three factors were related to the chemical composition of the fuel representing lignin pyrolysis products, cellulose/hemicellulose pyrolysis products, and nitrogen-containing organics, while three factor were related to the physical characteristics of the emitted compounds: volatile compounds, semi-volatile compounds, and filter-derived compounds. An ordinal analysis was performed based on the factor fractions to identify the most influential masses in each factor, and by deconvoluting high-resolution mass spectra fingerprint molecules for each factor were identified. Results from the factor analysis were linked to the optical properties of the emissions, and lignin and cellulose/hemicellulose pyrolysis products appeared to be the most important sources of brown carbon under the tested burning conditions. It is concluded that the emissions from the complex combustion process can be described by a limited set of physically meaningful factors, which will help to rationalize subsequent transformation and tracing of emissions in the atmosphere and associated impacts on health and climate.

8.
MethodsX ; 7: 101170, 2020.
Article in English | MEDLINE | ID: mdl-33318962

ABSTRACT

As an innovative analytical approach ordinal analysis is applied to positive matrix factorization (PMF) analysis outputs to identify the most important species and factors in chemical ionization mass spectrometry (CIMS) data. The procedure and outcome of the ordinal analysis facilitate further automated data analysis. Prior to standard PMF analysis, CIMS data were normalized to assure equal comparisons and facilitate the analysis process. The ordinal analysis was applied to the Factor Profiles (FPs) results, where mass numbers m/z are ranked by their FP fractions. Such ranking seeks the most influential compounds leading each factor, and the top m/z can be further investigated, e.g. by peak assignments. Rank maps can be plotted based on the ordinal results where the FPs are converted into a different space, which can potentially be used for cluster analysis. The rank maps provide an additional method for factor identification, especially when time series or other forms of the dataset are difficult to recognize. • Ordinal analysis identifies the most important fingerprint species leading each factor. • Rank map visualizes the features of each factors. • The method can be used as an online approach for source appointments of atmospheric pollutants.

9.
J Phys Chem A ; 124(51): 10879-10889, 2020 Dec 24.
Article in English | MEDLINE | ID: mdl-33319553

ABSTRACT

Accommodation of vapor-phase water molecules into ice crystal surfaces is a fundamental process controlling atmospheric ice crystal growth. Experimental studies investigating the accommodation process with various techniques report widely spread values of the water accommodation coefficient on ice, αice, and the results on its potential temperature dependence are inconclusive. We run molecular dynamics simulations of molecules condensing onto the basal plane of ice Ih using the TIP4P/Ice empirical force field and characterize the accommodated state from this molecular perspective, utilizing the interaction energy, the tetrahedrality order parameter, and the distance below the instantaneous interface as criteria. Changes of the order parameter turn out to be a suitable measure to distinguish between the surface and bulk states of a molecule condensing onto the disordered interface. In light of the findings from the molecular dynamics, we discuss and re-analyze a recent experimental data set on αice obtained with an environmental molecular beam (EMB) setup [Kong, X.; J. Phys. Chem. A 2014, 118 (22), 3973-3979] using kinetic molecular flux modeling, aiming at a more comprehensive picture of the accommodation process from a molecular perspective. These results indicate that the experimental observations indeed cannot be explained by evaporation alone. At the same time, our results raise the issue of rapidly growing relaxation times upon decreasing temperature, challenging future experimental efforts to cover relevant time scales. Finally, we discuss the relevance of the water accommodation coefficient on ice in the context of atmospheric cloud particle growth processes.

10.
J Phys Chem A ; 124(18): 3652-3661, 2020 May 07.
Article in English | MEDLINE | ID: mdl-32281376

ABSTRACT

Water and organics are omnipresent in the atmosphere, and their interactions influence the properties and lifetime of both aerosols and clouds. Nopinone is one of the major reaction products formed from ß-pinene oxidation, a compound emitted by coniferous trees, and it has been found in both gas and particle phases in the atmosphere. Here, we investigate the interactions between water molecules and nopinone surfaces by combining environmental molecular beam (EMB) experiments and molecular dynamics (MD) simulations. The EMB method enables detailed studies of the dynamics and kinetics of water interacting with solid nopinone at 170-240 K and graphite coated with a molecularly thin nopinone layer at 200-270 K. MD simulations that mimic the experimental conditions have been performed to add insights into the molecular-level processes. Water molecules impinging on nopinone surfaces are efficiently trapped (≥97%), and only a minor fraction scatters inelastically while maintaining 35-65% of their incident kinetic energy (23.2 ± 1.0 kJ mol-1). A large fraction (60-80%) of the trapped molecules desorbs rapidly, whereas a small fraction (20-40%) remains on the surface for more than 10 ms. The MD calculations confirm both rapid water desorption and the occurrence of strongly bound surface states. A comparison of the experimental and computational results suggests that the formation of surface-bound water clusters enhances water uptake on the investigated surfaces.

11.
Chemphyschem ; 20(17): 2171-2178, 2019 09 03.
Article in English | MEDLINE | ID: mdl-31194285

ABSTRACT

The processes of molecular clustering, condensation, nucleation, and growth of bulk materials on surfaces, represent a spectrum of vapor-surface interactions that are important to a range of physical phenomena. Here, we describe studies of the initial stages of methanol condensation on graphite, which is a simple model system where gas-surface interactions can be described in detail using combined experimental and theoretical methods. Experimental molecular beam methods and computational molecular dynamics simulations are used to investigate collision dynamics and surface accommodation of methanol molecules and clusters at temperatures from 160 K to 240 K. Both single molecules and methanol clusters efficiently trap on graphite, and even in rarified systems methanol-methanol interactions quickly become important. A kinetic model is developed to simulate the observed behavior, including the residence time of trapped molecules and the quantified Arrhenius kinetics. Trapped molecules are concluded to rapidly diffuse on the surface to find and/or form clusters already at surface coverages below 10-6 monolayers. Conversely, clusters that undergo surface collisions fragment and subsequently lose more loosely bound molecules. Thus, the surface mediates molecular collisions in a manner that minimizes the importance of initial cluster size, but highlights a strong sensitivity to surface diffusion and intermolecular interactions between the hydrogen bonded molecules.

12.
Phys Chem Chem Phys ; 21(3): 1141-1151, 2019 Jan 17.
Article in English | MEDLINE | ID: mdl-30607418

ABSTRACT

The interactions between water molecules and condensed n-butanol surfaces are investigated at temperatures from 160 to 240 K using the environmental molecular beam experimental method and complementary molecular dynamics (MD) simulations. In the experiments hyperthermal water molecules are directed onto a condensed n-butanol layer and the flux from the surface is detected in different directions. A small fraction of the water molecules scatters inelastically from the surface while losing 60-90% of their initial kinetic energy in collisions, and the angular distributions of these molecules are broad for both solid and liquid surfaces. The majority of the impinging water molecules are thermalized and trapped on the surface, while subsequent desorption is governed by two different processes: one where molecules bind briefly to the surface (residence time τ < 10 µs), and another where the molecules trap for a longer time τ = 0.8-2.0 ms before desorbing. Water molecules trapped on a liquid n-butanol surface are substantially less likely to escape from the surface compared to a solid layer. The MD calculations provide detialed insight into surface melting, adsorption, absorption and desorption processes. Calculated angular distributions and kinetic energy of emitted water molecules agree well with the experimental data. In spite of its hydrophobic tail and enhanced surface organization below the melting temperature, butanol's hydrophilic functional groups are concluded to be surprisingly accessible to adsorbed water molecules; a finding that may be explained by rapid diffusion of water away from hydrophobic surface structures towards more strongly bound conformational structures.

13.
J Phys Chem A ; 122(21): 4861-4868, 2018 May 31.
Article in English | MEDLINE | ID: mdl-29741896

ABSTRACT

Processes involving atmospheric aerosol and cloud particles are affected by condensation of organic compounds that are omnipresent in the atmosphere. On ice particles, organic compounds with hydrophilic functional groups form hydrogen bonds with the ice and orient their hydrophobic groups away from the surface. The organic layer has been expected to constitute a barrier to gas uptake, but recent experimental studies suggest that the accommodation of water molecules on ice is only weakly affected by condensed short-chain alcohol layers. Here, we employ molecular dynamics simulations to study the water interactions with n-butanol covered ice at 200 K and show that the small effect of the condensed layer is due to efficient diffusion of water molecules along the surface plane while seeking appropriate sites to penetrate, followed by penetration driven by the combined attractive forces from butanol OH groups and water molecules within the ice. The water molecules that penetrate through the n-butanol layer become strongly bonded by approximately three hydrogen bonds at the butanol-ice interface. The obtained accommodation coefficient (0.81 ± 0.03) is in excellent agreement with results from previous environmental molecular beam experiments, leading to a picture where an adsorbed n-butanol layer does not alter the apparent accommodation coefficient but dramatically changes the detailed molecular dynamics and kinetics.

14.
J Phys Chem A ; 122(18): 4470-4480, 2018 May 10.
Article in English | MEDLINE | ID: mdl-29659281

ABSTRACT

The OH-initiated atmospheric degradation of tert-butylamine (tBA), (CH3)3CNH2, was investigated in a detailed quantum chemistry study and in laboratory experiments at the European Photoreactor (EUPHORE) in Spain. The reaction was found to mainly proceed via hydrogen abstraction from the amino group, which in the presence of nitrogen oxides (NO x), generates tert-butylnitramine, (CH3)3CNHNO2, and acetone as the main reaction products. Acetone is formed via the reaction of tert-butylnitrosamine, (CH3)3CNHNO, and/or its isomer tert-butylhydroxydiazene, (CH3)3CN═NOH, with OH radicals, which yield nitrous oxide (N2O) and the (CH3)3C radical. The latter is converted to acetone and formaldehyde. Minor predicted and observed reaction products include formaldehyde, 2-methylpropene, acetamide and propan-2-imine. The reaction in the EUPHORE chamber was accompanied by strong particle formation which was induced by an acid-base reaction between photochemically formed nitric acid and the reagent amine. The tert-butylaminium nitrate salt was found to be of low volatility, with a vapor pressure of 5.1 × 10-6 Pa at 298 K. The rate of reaction between tert-butylamine and OH radicals was measured to be 8.4 (±1.7) × 10-12 cm3 molecule-1 s-1 at 305 ± 2 K and 1015 ± 1 hPa.

15.
J Phys Chem A ; 121(35): 6614-6619, 2017 Sep 07.
Article in English | MEDLINE | ID: mdl-28792755

ABSTRACT

Water and organic molecules are omnipresent in the environment, and their interactions are of central importance in many Earth system processes. Here we investigate molecular-level interactions between water and a nopinone surface using an environmental molecular beam (EMB) technique. Nopinone is a major reaction product formed during oxidation of ß-pinene, a prominent compound emitted by coniferous trees, which has been found in both the gas and particle phases of atmospheric aerosol. The EMB method enables detailed studies of the dynamics and kinetics of D2O molecules interacting with a solid nopinone surface at 202 K. Hyperthermal collisions between water and nopinone result in efficient trapping of water molecules, with a small fraction that scatter inelastically after losing 60-80% of their incident kinetic energy. While the majority of the trapped molecules rapidly desorb with a time constant τ less than 10 µs, a substantial fraction (0.32 ± 0.09) form strong bonds with the nopinone surface and remain in the condensed phase for milliseconds or longer. The interactions between water and nopinone are compared to results for recently studied water-alcohol and water-acetic acid systems, which display similar collision dynamics but differ with respect to the kinetics of accommodated water. The results contribute to an emerging surface science-based view and molecular-level description of organic aerosols in the atmosphere.

16.
Rev Sci Instrum ; 88(3): 035112, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28372415

ABSTRACT

Molecular beam techniques are commonly used to obtain detailed information about reaction dynamics and kinetics of gas-surface interactions. These experiments are traditionally performed in vacuum and the dynamic state of surfaces under ambient conditions is thereby excluded from detailed studies. Herein we describe the development and demonstration of a new vacuum-gas interface that increases the accessible pressure range in environmental molecular beam (EMB) experiments. The interface consists of a grating close to a macroscopically flat surface, which allows for experiments at pressures above 1 Pa including angularly resolved measurements of the emitted flux. The technique is successfully demonstrated using key molecular beam experiments including elastic helium and inelastic water scattering from graphite, helium and light scattering from condensed adlayers, and water interactions with a liquid 1-butanol surface. The method is concluded to extend the pressure range and flexibility in EMB studies with implications for investigations of high pressure interface phenomena in diverse fields including catalysis, nanotechnology, environmental science, and life science. Potential further improvements of the technique are discussed.

17.
J Phys Chem B ; 118(47): 13378-86, 2014 Nov 26.
Article in English | MEDLINE | ID: mdl-25079605

ABSTRACT

Water uptake on aerosol and cloud particles in the atmosphere modifies their chemistry and microphysics with important implications for climate on Earth. Here, we apply an environmental molecular beam (EMB) method to characterize water accommodation on ice and organic surfaces. The adsorption of surface-active compounds including short-chain alcohols, nitric acid, and acetic acid significantly affects accommodation of D2O on ice. n-Hexanol and n-butanol adlayers reduce water uptake by facilitating rapid desorption and function as inefficient barriers for accommodation as well as desorption of water, while the effect of adsorbed methanol is small. Water accommodation is close to unity on nitric-acid- and acetic-acid-covered ice, and accommodation is significantly more efficient than that on the bare ice surface. Water uptake is inefficient on solid alcohols and acetic acid but strongly enhanced on liquid phases including a quasi-liquid layer on solid n-butanol. The EMB method provides unique information on accommodation and rapid kinetics on volatile surfaces, and these studies suggest that adsorbed organic and acidic compounds need to be taken into account when describing water at environmental interfaces.

18.
J Phys Chem B ; 118(47): 13427-34, 2014 Nov 26.
Article in English | MEDLINE | ID: mdl-25139130

ABSTRACT

The detailed interactions of nitrogen oxides with ice are of fundamental interest and relevance for chemistry in cold regions of the atmosphere. Here, the interactions of NO, NO2, N2O4, and N2O5 with ice surfaces at temperatures between 93 and 180 K are investigated with molecular beam techniques. Surface collisions are observed to result in efficient transfer of kinetic energy and trapping of molecules on the ice surfaces. NO and NO2 rapidly desorb from pure ice with upper bounds for the surface binding energies of 0.16 ± 0.02 and 0.26 ± 0.03 eV, respectively. Above 150 K, N2O4 desorption follows first-order kinetics and is well described by the Arrhenius parameters Ea = 0.39 ± 0.04 eV and A = 10((15.4±1.2)) s(-1), while a stable N2O4 adlayer is formed at lower temperatures. A fraction of incoming N2O5 reacts to form HNO3 on the ice surface. The N2O5 desorption rates are substantially lower on pure water ice (Arrhenius parameters: Ea = 0.36 ± 0.02 eV; A = 10((15.3±0.7)) s(-1)) than on HNO3-covered ice (Ea = 0.24 ± 0.02 eV; A = 10((11.5±0.7)) s(-1)). The N2O5 desorption kinetics also sensitively depend on the sub-monolayer coverage of HNO3, with a minimum in N2O5 desorption rate at a low but finite coverage of HNO3. The studies show that none of the systems with resolvable desorption kinetics undergo ordinary desorption from ice, and instead desorption likely involves two or more surface states, with additional complexity added by coadsorbed molecules.

19.
J Phys Chem B ; 118(47): 13333-40, 2014 Nov 26.
Article in English | MEDLINE | ID: mdl-24878257

ABSTRACT

Adsorbed organic compounds modify the properties of environmental interfaces with potential implications for many Earth system processes. Here, we describe experimental studies of water interactions with acetic acid (AcOH) layers on ice and graphite surfaces at temperatures from 186 to 200 K. Hyperthermal D2O water molecules are efficiently trapped on all of the investigated surfaces, with only a minor fraction that scatters inelastically after an 80% loss of kinetic energy to surface modes. Trapped molecules desorb rapidly from both µm-thick solid AcOH and AcOH monolayers on graphite, indicating that water has limited opportunities to form hydrogen bonds with these surfaces. In contrast, trapped water molecules bind efficiently to AcOH-covered ice and remain on the surface on the observational time scale of the experiments (60 ms). Thus, adsorbed AcOH is observed to have a significant impact on water-ice surface properties and to enhance the water accommodation coefficient compared to bare ice surfaces. The mechanism for increased water uptake and the implications for atmospheric cloud processes are discussed.

20.
J Phys Chem A ; 118(22): 3973-9, 2014 Jun 05.
Article in English | MEDLINE | ID: mdl-24814567

ABSTRACT

The interaction of water vapor with ice remains incompletely understood despite its importance in environmental processes. A particular concern is the probability for water accommodation on the ice surface, for which results from earlier studies vary by more than 2 orders of magnitude. Here, we apply an environmental molecular beam method to directly determine water accommodation and desorption kinetics on ice. Short D2O gas pulses collide with H2O ice between 170 and 200 K, and a fraction of the adsorbed molecules desorbs within tens of milliseconds by first order kinetics. The bulk accommodation coefficient decreases nonlinearly with increasing temperature and reaches 0.41 ± 0.18 at 200 K. The kinetics are well described by a model wherein water molecules adsorb in a surface state from which they either desorb or become incorporated into the bulk ice structure. The weakly bound surface state affects water accommodation on the ice surface with important implications for atmospheric cloud processes.

SELECTION OF CITATIONS
SEARCH DETAIL
...