Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 154
Filter
1.
J Phys Chem Lett ; 8(22): 5487-5491, 2017 Nov 16.
Article in English | MEDLINE | ID: mdl-29108417

ABSTRACT

We use resonant inelastic X-ray scattering (RIXS) to resolve vibrational losses corresponding to the OH stretch where the X-ray absorption process allows us to selectively probe different structural subensembles in liquid water. The results point to a unified interpretation of X-ray and vibrational spectroscopic data in line with a picture of two classes of structural environments in the liquid at ambient conditions with predominantly close-packed high-density liquid (HDL) and occasional local fluctuations into strongly tetrahedral low-density liquid (LDL).

2.
J Phys Chem Lett ; 8(16): 3820-3825, 2017 Aug 17.
Article in English | MEDLINE | ID: mdl-28759996

ABSTRACT

The direct elucidation of the reaction pathways in heterogeneous catalysis has been challenging due to the short-lived nature of reaction intermediates. Here, we directly measured on ultrafast time scales the initial hydrogenation steps of adsorbed CO on a Ru catalyst surface, which is known as the bottleneck reaction in syngas and CO2 reforming processes. We initiated the hydrogenation of CO with an ultrafast laser temperature jump and probed transient changes in the electronic structure using real-time X-ray spectroscopy. In combination with theoretical simulations, we verified the formation of CHO during CO hydrogenation.

3.
J Chem Phys ; 146(13): 134506, 2017 Apr 07.
Article in English | MEDLINE | ID: mdl-28390372

ABSTRACT

We compute the x-ray emission spectrum of liquid methanol, with the dynamical effects that result from the creation of the core hole included in a semiclassical way. Our method closely reproduces a fully quantum mechanical description of the dynamical effects for relevant one-dimensional models of the hydrogen-bonded methanol molecules. For the liquid, we find excellent agreement with the experimental spectrum, including the large isotope effect in the first split peak. The dynamical effects depend sensitively on the initial structure in terms of the local hydrogen-bonding (H-bonding) character: non-donor molecules contribute mainly to the high-energy peak while molecules with a strong donating H-bond contribute to the peak at lower energy. The spectrum thus reflects the initial structure mediated by the dynamical effects that are, however, seen to be crucial in order to reproduce the intensity distribution of the recently measured spectrum.

4.
Article in English | MEDLINE | ID: mdl-27107480

ABSTRACT

Using two sets of effective rotational constants for the ground (000) and the excited bending (010) vibrational states the calculation of frequencies and intensities of vibration-rotational transitions for J″=0-2; and J'=0-3; was carried out in frame of the model of a rigid asymmetric top for temperatures from 0 to 40K. The calculation of the intensities of vibration-rotational absorption bands of H2O in an Ar matrix was carried out both for thermodynamic equilibrium and for the case of non-equilibrium population of para- and ortho-states. For the analysis of possible interaction of vibration-rotational and translational motions of a water molecule in an Ar matrix by 3D Schrödinger equation solving using discrete variable representation (DVR) method, calculations of translational frequencies of Н2О in a cage formed after one argon atom deleting were carried out. The results of theoretical calculations were compared to experimental data taken from literature.

5.
J Chem Phys ; 145(13): 134507, 2016 Oct 07.
Article in English | MEDLINE | ID: mdl-27782436

ABSTRACT

The thermodynamic response functions of water exhibit an anomalous increase upon cooling that becomes strongly amplified in the deeply supercooled regime due to structural fluctuations between disordered and tetrahedral local structures. Here, we compare structural data from recent x-ray laser scattering measurements of water at 1 bar and temperatures down to 227 K with structural properties computed for several different water models using molecular dynamics simulations. Based on this comparison, we critically evaluate four different thermodynamic scenarios that have been invoked to explain the unusual behavior of water. The critical point-free model predicts small variations in the tetrahedrality with decreasing temperature, followed by a stepwise change at the liquid-liquid transition around 228 K at ambient pressure. This scenario is not consistent with the experimental data that instead show a smooth and accelerated variation in structure from 320 to 227 K. Both the singularity-free model and ice coarsening hypothesis give trends that indirectly indicate an increase in tetrahedral structure with temperature that is too weak to be consistent with experiment. A model that includes an apparent divergent point (ADP) at high positive pressure, however, predicts structural development consistent with our experimental measurements. The terminology ADP, instead of the commonly used liquid-liquid critical point, is more general in that it focuses on the growing fluctuations, whether or not they result in true criticality. Extrapolating this model beyond the experimental data, we estimate that an ADP in real water may lie around 1500 ± 250 bars and 190 ± 6 K.

6.
J Evol Biol ; 29(1): 144-52, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26427029

ABSTRACT

Behavioural syndromes, that is correlated behaviours, may be a result from adaptive correlational selection, but in a new environmental setting, the trait correlation might act as an evolutionary constraint. However, knowledge about the quantitative genetic basis of behavioural syndromes, and the stability and evolvability of genetic correlations under different ecological conditions, is limited. We investigated the quantitative genetic basis of correlated behaviours in the freshwater isopod Asellus aquaticus. In some Swedish lakes, A. aquaticus has recently colonized a novel habitat and diverged into two ecotypes, presumably due to habitat-specific selection from predation. Using a common garden approach and animal model analyses, we estimated quantitative genetic parameters for behavioural traits and compared the genetic architecture between the ecotypes. We report that the genetic covariance structure of the behavioural traits has been altered in the novel ecotype, demonstrating divergence in behavioural correlations. Thus, our study confirms that genetic correlations behind behaviours can change rapidly in response to novel selective environments.


Subject(s)
Behavior, Animal/physiology , Isopoda/physiology , Adaptation, Physiological , Animals , Ecosystem , Ecotype , Isopoda/genetics , Lakes , Sweden
7.
J Chem Phys ; 143(7): 074701, 2015 Aug 21.
Article in English | MEDLINE | ID: mdl-26298142

ABSTRACT

We studied CO oxidation on Ru(0001) induced by 400 nm and 800 nm femtosecond laser pulses where we find a branching ratio between CO oxidation and desorption of 1:9 and 1:31, respectively, showing higher selectivity towards CO oxidation for the shorter wavelength excitation. Activation energies computed with density functional theory show discrepancies with values extracted from the experiments, indicating both a mixture between different adsorbed phases and importance of non-adiabatic effects on the effective barrier for oxidation. We simulated the reactions using kinetic modeling based on the two-temperature model of laser-induced energy transfer in the substrate combined with a friction model for the coupling to adsorbate vibrations. This model gives an overall good agreement with experiment except for the substantial difference in yield ratio between CO oxidation and desorption at 400 nm and 800 nm. However, including also the initial, non-thermal effect of electrons transiently excited into antibonding states of the O-Ru bond yielded good agreement with all experimental results.

8.
Phys Rev Lett ; 114(15): 156101, 2015 Apr 17.
Article in English | MEDLINE | ID: mdl-25933322

ABSTRACT

We show that coadsorbed oxygen atoms have a dramatic influence on the CO desorption dynamics from Ru(0001). In contrast to the precursor-mediated desorption mechanism on Ru(0001), the presence of surface oxygen modifies the electronic structure of Ru atoms such that CO desorption occurs predominantly via the direct pathway. This phenomenon is directly observed in an ultrafast pump-probe experiment using a soft x-ray free-electron laser to monitor the dynamic evolution of the valence electronic structure of the surface species. This is supported with the potential of mean force along the CO desorption path obtained from density-functional theory calculations. Charge density distribution and frozen-orbital analysis suggest that the oxygen-induced reduction of the Pauli repulsion, and consequent increase of the dative interaction between the CO 5σ and the charged Ru atom, is the electronic origin of the distinct desorption dynamics. Ab initio molecular dynamics simulations of CO desorption from Ru(0001) and oxygen-coadsorbed Ru(0001) provide further insights into the surface bond-breaking process.

9.
Science ; 347(6225): 978-82, 2015 Feb 27.
Article in English | MEDLINE | ID: mdl-25722407

ABSTRACT

Femtosecond x-ray laser pulses are used to probe the carbon monoxide (CO) oxidation reaction on ruthenium (Ru) initiated by an optical laser pulse. On a time scale of a few hundred femtoseconds, the optical laser pulse excites motions of CO and oxygen (O) on the surface, allowing the reactants to collide, and, with a transient close to a picosecond (ps), new electronic states appear in the O K-edge x-ray absorption spectrum. Density functional theory calculations indicate that these result from changes in the adsorption site and bond formation between CO and O with a distribution of OC-O bond lengths close to the transition state (TS). After 1 ps, 10% of the CO populate the TS region, which is consistent with predictions based on a quantum oscillator model.

10.
Nature ; 510(7505): 381-4, 2014 Jun 19.
Article in English | MEDLINE | ID: mdl-24943953

ABSTRACT

Water has a number of anomalous physical properties, and some of these become drastically enhanced on supercooling below the freezing point. Particular interest has focused on thermodynamic response functions that can be described using a normal component and an anomalous component that seems to diverge at about 228 kelvin (refs 1-3). This has prompted debate about conflicting theories that aim to explain many of the anomalous thermodynamic properties of water. One popular theory attributes the divergence to a phase transition between two forms of liquid water occurring in the 'no man's land' that lies below the homogeneous ice nucleation temperature (TH) at approximately 232 kelvin and above about 160 kelvin, and where rapid ice crystallization has prevented any measurements of the bulk liquid phase. In fact, the reliable determination of the structure of liquid water typically requires temperatures above about 250 kelvin. Water crystallization has been inhibited by using nanoconfinement, nanodroplets and association with biomolecules to give liquid samples at temperatures below TH, but such measurements rely on nanoscopic volumes of water where the interaction with the confining surfaces makes the relevance to bulk water unclear. Here we demonstrate that femtosecond X-ray laser pulses can be used to probe the structure of liquid water in micrometre-sized droplets that have been evaporatively cooled below TH. We find experimental evidence for the existence of metastable bulk liquid water down to temperatures of 227(-1)(+2) kelvin in the previously largely unexplored no man's land. We observe a continuous and accelerating increase in structural ordering on supercooling to approximately 229 kelvin, where the number of droplets containing ice crystals increases rapidly. But a few droplets remain liquid for about a millisecond even at this temperature. The hope now is that these observations and our detailed structural data will help identify those theories that best describe and explain the behaviour of water.

11.
Clin Microbiol Infect ; 20(3): 235-41, 2014 Mar.
Article in English | MEDLINE | ID: mdl-23742660

ABSTRACT

Hantaviruses are the causative agents of haemorrhagic fever with renal syndrome (HFRS) in Eurasia and of hantavirus cardiopulmonary syndrome (HCPS) in the Americas. The case fatality rate varies between different hantaviruses and can be up to 40%. At present, there is no specific treatment available. The hantavirus pathogenesis is not well understood, but most likely, both virus-mediated and host-mediated mechanisms are involved. The aim of the present study was to investigate the association among Puumala hantavirus (PUUV) viral RNA load, humoral immune response and disease severity in patients with HFRS. We performed a study of 105 PUUV-infected patients that were followed during the acute phase of disease and for up to 1-3 months later. Fifteen of the 105 patients (14%) were classified as having moderate/severe disease. A low PUUV-specific IgG response (p <0.05) and also a higher white blood cell count (p <0.001) were significantly associated with more severe disease. The PUUV RNA was detected in a majority of patient plasma samples up to 9 days after disease onset; however, PUUV RNA load or longevity of viraemia were not significantly associated with disease severity. We conclude that a low specific IgG response was associated with disease severity in patients with HFRS, whereas PUUV RNA load did not seem to affect the severity of HFRS. Our results raise the possibility of passive immunotherapy as a useful treatment for hantavirus-infected patients.


Subject(s)
Hemorrhagic Fever with Renal Syndrome/immunology , Hemorrhagic Fever with Renal Syndrome/virology , Immunity, Humoral , Puumala virus/immunology , Viral Load , Adult , Aged , Antibodies, Viral/blood , Antibodies, Viral/immunology , Female , Hemorrhagic Fever with Renal Syndrome/diagnosis , Hemorrhagic Fever with Renal Syndrome/therapy , Humans , Immunoglobulin A/blood , Immunoglobulin A/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin M/blood , Immunoglobulin M/immunology , Male , Middle Aged , Puumala virus/genetics , Severity of Illness Index
12.
J Chem Phys ; 138(23): 234708, 2013 Jun 21.
Article in English | MEDLINE | ID: mdl-23802977

ABSTRACT

At low coverage of water on Cu(110), substrate-mediated electrostatics lead to zigzagging chains along [001] as observed with STM [T. Yamada, S. Tamamori, H. Okuyama, and T. Aruga, "Anisotropic water chain growth on Cu(110) observed with scanning tunneling microscopy" Phys. Rev. Lett. 96, 036105 (2006)]. Using x-ray absorption spectroscopy we find an anomalous low-energy resonance at ~533.1 eV which, based on density functional theory spectrum simulations, we assign to an unexpected configuration of water units whose uncoordinated O-H bonds directly face those of their neighbors; this interaction repeats over trough sites with enhanced electron density and is analogous to the case of a hydrated electron.

13.
Phys Rev Lett ; 110(18): 186101, 2013 May 03.
Article in English | MEDLINE | ID: mdl-23683223

ABSTRACT

We have studied the femtosecond dynamics following optical laser excitation of CO adsorbed on a Ru surface by monitoring changes in the occupied and unoccupied electronic structure using ultrafast soft x-ray absorption and emission. We recently reported [M. Dell'Angela et al. Science 339, 1302 (2013)] a phonon-mediated transition into a weakly adsorbed precursor state occurring on a time scale of >2 ps prior to desorption. Here we focus on processes within the first picosecond after laser excitation and show that the metal-adsorbate coordination is initially increased due to hot-electron-driven vibrational excitations. This process is faster than, but occurs in parallel with, the transition into the precursor state. With resonant x-ray emission spectroscopy, we probe each of these states selectively and determine the respective transient populations depending on optical laser fluence. Ab initio molecular dynamics simulations of CO adsorbed on Ru(0001) were performed at 1500 and 3000 K providing insight into the desorption process.


Subject(s)
Carbon Monoxide/chemistry , Ruthenium/chemistry , Adsorption , Lasers , Molecular Dynamics Simulation , Phonons , Surface Properties , X-Ray Absorption Spectroscopy/methods
14.
Science ; 339(6125): 1302-5, 2013 Mar 15.
Article in English | MEDLINE | ID: mdl-23493709

ABSTRACT

We used the Linac Coherent Light Source free-electron x-ray laser to probe the electronic structure of CO molecules as their chemisorption state on Ru(0001) changes upon exciting the substrate by using a femtosecond optical laser pulse. We observed electronic structure changes that are consistent with a weakening of the CO interaction with the substrate but without notable desorption. A large fraction of the molecules (30%) was trapped in a transient precursor state that would precede desorption. We calculated the free energy of the molecule as a function of the desorption reaction coordinate using density functional theory, including van der Waals interactions. Two distinct adsorption wells-chemisorbed and precursor state separated by an entropy barrier-explain the anomalously high prefactors often observed in desorption of molecules from metals.

15.
J Chem Phys ; 136(3): 034702, 2012 Jan 21.
Article in English | MEDLINE | ID: mdl-22280772

ABSTRACT

We report x-ray emission and absorption spectroscopy studies of the electronic structure of the predissociative α(3) phase of CO bound at hollow sites of Fe(100) as well as of the on-top bound species in the high-coverage α(1) phase. The analysis is supported by density functional calculations of structures and spectra. The bonding of "lying down" CO in the hollow site is well described in terms of π to π∗ charge transfer made possible through bonding interaction also at the oxygen in the minority spin-channel. The on-top CO in the mixed, high-coverage α(1) phase is found to be tilted due to adsorbate-adsorbate interaction, but still with bonding mainly characteristic of "vertical" on-top adsorbed CO similar to other transition-metal surfaces.


Subject(s)
Carbon Monoxide/chemistry , Iron/chemistry , Quantum Theory , Spectrometry, X-Ray Emission
16.
Phys Rev Lett ; 107(19): 195502, 2011 Nov 04.
Article in English | MEDLINE | ID: mdl-22181624

ABSTRACT

The oxidation of Pt(111) at near-ambient O2 pressures has been followed in situ using x-ray photoelectron spectroscopy (XPS) and ex situ using x-ray absorption spectroscopy (XAS). Polarization-dependent XAS signatures at the O K edge reveal significant temperature- and pressure-dependent changes of the Pt-O interaction. Oxide growth commences via a PtO-like surface oxide that coexists with chemisorbed oxygen, while an ultrathin α-PtO2 trilayer is identified as the precursor to bulk oxidation. These results have important implications for understanding the chemical state of Pt in catalysis.

17.
Phys Chem Chem Phys ; 13(44): 19997-20007, 2011 Nov 28.
Article in English | MEDLINE | ID: mdl-22009343

ABSTRACT

We have developed wide-angle X-ray diffraction measurements with high energy-resolution and accuracy to study water structure at three different temperatures (7, 25 and 66 °C) under normal pressure. Using a spherically curved Ge crystal an energy resolution better than 15 eV has been achieved which eliminates influence from Compton scattering. The high quality of the data allows for a reliable Fourier transform of the experimental data resolving shell structure out to ~12 Å, i.e. 5 hydration shells. Large-scale molecular dynamics (MD) simulations using the TIP4P/2005 force-field reproduce excellently the experimental shell-structure in the range 4-12 Å although less agreement is seen for the first peak in the intermolecular pair-correlation function (PCF). The Shiratani-Sasai Local Structure Index [J. Chem. Phys. 104, 7671 (1996)] identifies a tetrahedral minority giving the intermediate-range oscillations in the O-O PCF and a disordered majority providing a more featureless background in this range. The current study supports the proposal that the structure of liquid water, even at high temperatures, can be described in terms of a two-state fluctuation model involving local structures related to the high-density and low-density forms of liquid water postulated in the liquid-liquid phase transition hypothesis.

18.
Phys Chem Chem Phys ; 13(44): 19918-24, 2011 Nov 28.
Article in English | MEDLINE | ID: mdl-21915406

ABSTRACT

In the supercooled regime at elevated pressure two forms of liquid water, high-density (HDL) and low-density (LDL), have been proposed to be separated by a coexistence line ending at a critical point, but a connection to water at ambient conditions has been lacking. Here we perform large-scale molecular dynamics simulations and demonstrate that the underlying potential energy surface gives a strictly bimodal characterization of the molecules at all temperatures and pressures, including the biologically and technologically important ambient regime, as spatially inhomogeneous either LDL- or HDL-like with a 3 : 1 predominance for HDL under ambient conditions. The Widom line in the supercooled regime, where maximal structural fluctuations take place, coincides with a 1 : 1 distribution. Although our results are based on molecular dynamics force-field simulations the close agreement with recent analyses of experimental X-ray spectroscopy and scattering data indicates a unified description also of real liquid water covering supercooled to ambient conditions.

19.
J Evol Biol ; 24(9): 1887-96, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21658187

ABSTRACT

Colonization of new habitats can relax selection pressures, and traits or trait combinations no longer selected for might become reduced or lost. We investigated behavioural differentiation and behavioural trait integration in the freshwater isopod Asellus aquaticus. This isopod has recently colonized a novel habitat and diverged into two ecotypes which encounter different predator faunas. We investigated sex-specific behavioural differences and phenotypic integration in three behavioural assays: (i) time to emerge (TE) from a shelter, (ii) activity and (iii) escape behaviour. General activity and escape behaviour differed between ecotypes. Furthermore, general activity and TE differed between sexes. Behavioural traits were more frequently correlated in the ancestral habitat, and phenotypic integration tended to be higher in this habitat as well. Our study suggests that different predator types, but also other ecological factors such as habitat matrices and population densities, might explain the differences in behavioural integration in these ecotypes.


Subject(s)
Biological Evolution , Ecosystem , Ecotype , Escape Reaction , Isopoda , Animals , Female , Male , Motor Activity , Phenotype , Sex Factors , Sweden
20.
J Chem Phys ; 134(21): 214506, 2011 Jun 07.
Article in English | MEDLINE | ID: mdl-21663366

ABSTRACT

We present extensive simulations on the TIP4P∕2005 water model showing significantly enhanced small-angle scattering (SAS) in the supercooled regime. The SAS is related to the presence of a Widom line (T(W)) characterized by maxima in thermodynamic response functions and Ornstein-Zernike correlation length. Recent experimental small-angle x-ray scattering data [Huang et al., J. Chem. Phys. 133, 134504 (2010)] are excellently reproduced, albeit with an increasing temperature offset at lower temperatures. Assuming the same origin of the SAS in experiment and model this suggests the existence of a Widom line also in real supercooled water. Simulations performed at 1000 bar show an increased abruptness of a crossover from dominating high-density (HDL) to dominating low-density (LDL) liquid and strongly enhanced SAS associated with crossing T(W), consistent with a recent determination of the critical pressure of TIP4P∕2005 at 1350 bar. Furthermore, good agreement with experimental isothermal compressibilities at 1000, 1500, and 2000 bar shows that the high pressure supercooled thermodynamic behavior of water is well described by TIP4P∕2005. Analysis of the tetrahedrality parameter Q reveals that the HDL-LDL structural transition is very sharp at 1000 bar, and that structural fluctuations become strongly coupled to density fluctuations upon approaching T(W). Furthermore, the tetrahedrality distribution becomes bimodal at ambient temperatures, an observation that possibly provides a link between HDL-LDL fluctuations and the structural bimodality in liquid water indicated by x-ray spectroscopic techniques. Computed x-ray absorption spectra are indeed found to show sensitivity to the tetrahedrality parameter.

SELECTION OF CITATIONS
SEARCH DETAIL
...