Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Anim Sci ; 93(1): 158-67, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25568364

ABSTRACT

Two comparative serial-slaughter experiments were conducted to determine whole empty body (WEB) composition and accretion rates of Ca and P in 18 to 109 kg BW pigs to provide information for modeling of these nutrients for growth. Both studies were conducted with 5 sets of 5 littermate barrows which were allotted to 5 slaughter groups in each study (Exp. 1: 18, 27, 36, 45, and 54 kg BW; Exp. 2: 36, 54, 73, 91, and 109 kg BW). Pigs were fed corn-soybean meal-based diets fortified with minerals and vitamins in 2 dietary phases in Exp. 1 (Phase 1: 18 to 36 kg BW; Phase 2: 36 to 54 kg BW) and 3 dietary phases in Exp. 2 (Phase 2: 36 to 54 kg BW; Phase 3: 54 to 78 kg BW; and Phase 4: 78 to 109 kg BW). At the predetermined BW, pigs were slaughtered and separated into body components of hair, hooves, blood, head, viscera, and carcass. The carcass was split along the dorsal midline and the left carcass side was ground for chemical analysis. Whole empty body weight averaged 93.6% and 94.0% of live BW in Exp. 1 and Exp. 2, respectively. As WEB weight increased in both experiments, the percentage carcass of the WEB linearly (P < 0.05) increased, the percentage viscera linearly (P < 0.05) decreased, and the mass (g) of N, ash, Ca, and P in the WEB increased linearly (R(2) = 0.98). The concentration (g/kg) of P in the WEB of 18 to 54 kg pigs increased from 4.30 to 4.57 (linear; P < 0.05) and for Ca increased from 5.13 to 5.66 (linear; P < 0.05). In Exp. 2, P concentration was not related to WEB weight and Ca concentration increased quadratically (P < 0.05). The relative accretion rate of N to P was 1.00 (R(2) = 0.99) in the pigs from 18 to 54 kg. In conclusion, these results indicate that compositional changes as BW increases are strongly related to P retention and that the quantification of WEB P and relationships of WEB P to other chemical components in the body may be useful for modeling purposes in growing and finishing pigs.


Subject(s)
Animal Nutritional Physiological Phenomena , Body Composition/physiology , Calcium, Dietary/pharmacokinetics , Phosphorus, Dietary/pharmacokinetics , Sus scrofa/growth & development , Sus scrofa/metabolism , Animal Feed/analysis , Animal Husbandry/methods , Animals , Body Weight/physiology , Models, Biological , Swine
2.
J Anim Sci ; 84(3): 618-26, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16478953

ABSTRACT

Thirty-six barrows were used in a series of 3 P-balance experiments in which growing and finishing pigs were fed highly digestible, semi-purified diets at or below the dietary available P requirement to estimate the effect of BW on endogenous P loss. Experiments 1, 2, and 3 were conducted with pigs averaging 27, 59, and 98 kg of BW, respectively. In each experiment, pigs were placed in metabolism crates and allotted by weight and litter to 3 dietary treatments. The basal diet consisted of sucrose, dextrose, cornstarch, and casein fortified with minerals (except P) and vitamins. Diets 1, 2, and 3 in Exp. 1 were the basal diet with 0, 0.078, or 0.157% added P, respectively, from monosodium phosphate. In Exp. 2 and 3, diets 1, 2, and 3 were the basal diet with 0, 0.067, and 0.134% added P, respectively, from monosodium phosphate. Within replicate, pigs were fed equal amounts of feed twice daily. Pigs were adjusted to treatments for 7 d before a 6-d, marker-to-marker collection of feces and urine. Phosphorus intakes for pigs fed the 3 diets ranged from 1.73 to 3.91 g/d in Exp. 1, from 2.18 to 5.32 g/d in Exp. 2, and from 1.96 to 6.26 g/d in Exp. 3. Fecal P excretion and P absorption increased linearly (P < 0.05) with increasing P intake. In the 3 experiments, urinary P excretion (g/d) was low for pigs fed diet 1 (0.010, 0.011, 0.019) and diet 2 (0.013, 0.058, 0.084) and was low for pigs fed diet 3 in Exp. 1 (0.037); however, urinary P was greater in pigs fed diet 3 in Exp. 2 and 3 (0.550 and 0.486, respectively). When P absorption (Y, g/d) was regressed on P intake (X, g/d) in Exp. 1, 2, and 3, the relationships were linear (P < 0.01): Y = -0.110 + 0.971X (R2 = 0.999), Y = -0.156 + 0.939X (R2 = 0.998), and Y = -0.226 + 0.8919X (R2 = 0.982), respectively. Thus, our estimates of endogenous P loss at zero P intake were 110, 156, and 226 mg/d for 27-, 59-, and 98-kg pigs, respectively. When these Y-intercepts were regressed on BW, the relationship was Y = 63.06 + 1.632X (R2 = 0.996), where Y = endogenous P loss in mg/d and X = BW in kg. Based on these data, we estimate the endogenous P loss of pigs fed highly digestible, semi-purified diets to increase by approximately 1.632 mg for each 1-kg increase in BW from 25 to 100 kg.


Subject(s)
Diet/veterinary , Phosphorus/metabolism , Swine/metabolism , Animal Feed/analysis , Animals , Body Weight/physiology , Calcium/analysis , Calcium/urine , Calcium, Dietary/administration & dosage , Digestion/physiology , Feces/chemistry , Isotope Labeling/veterinary , Male , Phosphorus/urine , Phosphorus, Dietary/administration & dosage , Phosphorus, Dietary/analysis , Phosphorus, Dietary/metabolism , Potassium Radioisotopes , Swine/growth & development
3.
J Anim Sci ; 81(9): 2259-69, 2003 Sep.
Article in English | MEDLINE | ID: mdl-12968701

ABSTRACT

Four experiments were conducted to evaluate the effects of supplementing graded levels (0 to 100 ppm) of L-carnitine to the diet of weanling pigs on growth performance during a 34- to 38-d experimental period. A fifth experiment was conducted to determine the effects of addition of L-carnitine to diets with or without added soybean oil (SBO) on growth performance. In Exp. 1, 128 pigs (initial BW = 5.5 kg) were allotted to four dietary treatments (six pens per treatment of four to six pigs per pen). Dietary treatments were a control diet containing no added L-carnitine and the control diet with 25, 50, or 100 ppm of added L-carnitine. In Exp. 2, 3, and 4, pigs (4.8 to 5.6 kg of BW) were allotted to five dietary treatments consisting of either a control diet containing no added L-carnitine or the control diet with 25, 50, 75, or 100 ppm of added L-carnitine. All diets in Exp. 1 to 4 contained added soybean oil (4 to 6%). There were seven pens per treatment (four to five pigs per pen) in Exp. 2, whereas Exp. 3 and 4 had five and six pens/treatment (eight pigs per pen), respectively. In general, dietary carnitine additions had only minor effects on growth performance during Phases 1 and 3; however, dietary L-carnitine increased (linear [Exp. 1], quadratic [Exp. 2 to 4], P < 0.03) ADG and gain:feed (G:F) during Phase 2. The improvements in growth performance during Phase 2 were of great enough magnitude that carnitine addition tended to increase ADG (linear, P < 0.10) and improve G:F (quadratic, P < 0.02) for the entire 38-d period. In Exp. 5, 216 weanling pigs (5.8 kg of BW) were allotted (12 pens/treatment of four to five pigs per pen) to four dietary treatments. The four dietary treatments were arranged in a 2 x 2 factorial with main effects of added SBO (0 or 5%) and added L-carnitine (0 or 50 ppm). Pigs fed SBO tended (P < 0.07) to grow more slowly and consumed less feed compared with those not fed SBO, but G:F was improved (P < 0.02). The addition of L-carnitine did not affect (P > 0.10) ADG or ADFI; however, it improved (P < 0.03) G:F. Also, the increase in G:F associated with L-carnitine tended to be more pronounced for pigs fed SBO than those not fed SBO (carnitine x SBO, P < 0.10). These results suggest that the addition of 50 to 100 ppm of added L-carnitine to the diet improved growth performance of weanling pigs. In addition, supplemental L-carnitine tended to be more effective when SBO was provided in the diet.


Subject(s)
Carnitine/administration & dosage , Swine/growth & development , Aging/physiology , Animal Feed , Animal Nutritional Physiological Phenomena , Animals , Animals, Newborn , Dose-Response Relationship, Drug , Female , Male , Random Allocation , Soybean Oil/administration & dosage , Weaning , Weight Gain/drug effects
4.
J Anim Sci ; 81(2): 492-502, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12643494

ABSTRACT

Two experiments were conducted to evaluate the effects of adding fiber sources to reduced-crude protein (CP), amino acid-supplemented diets on N excretion, growth performance, and carcass traits of growing-finishing pigs. In Exp. 1, six sets of four littermate barrows (initial weight = 36.3 kg) were allotted randomly to four dietary treatments to determine N balance and slurry composition. Dietary treatments were: 1) fortified corn-soybean meal, control, 2) as fortified corn-soybean meal with CP lowered by 4 percentage units and supplemented with lysine, threonine, methionine, tryptophan, isoleucine, and valine (LPAA), 3) same as Diet 2 plus 10% soybean hulls, and 4) same as Diet 2 with 10% dried beet pulp. Nitrogen intake, absorption, and retention (g/d) were reduced (P < 0.04) in pigs fed the low- protein diets, but they were not affected (P > 0.10) by addition of fiber sources to the LPAA diet. However, N absorption, as a percentage of intake, was not affected (P > 0.10) by dietary treatment. Nitrogen retention, expressed as a percentage of N intake, was increased (P < 0.02) in pigs fed the low-protein diets, but it was not affected by fiber addition to the LPAA diet. Urinary and total N excretion was reduced (P < 0.01) by 50 and 40%, respectively, in pigs fed the low- protein diets, but it was not affected (P > 0.10) by fiber addition. However, fiber addition to the LPAA diet tended to result in a greater proportion of N excreted in the feces than in the urine. Slurry pH, ammonium N content, and urinary urea N excretion were reduced (P < 0.10) in pigs fed LPAA, and a further reduction (P < 0.06) in slurry ammonium N content and urinary urea N was observed with fiber addition. Also, fiber addition to the LPAA diet increased (P < 0.02) slurry VFA concentrations. In Exp. 2, 72 pigs were blocked by body weight and sex and allotted randomly to three dietary treatments that were similar to those in Exp. 1, with a corn-soybean meal control diet, LPAA diet, and a LPAA diet with 10% soybean hulls. Pigs were fed the diets from 28.6 to 115 kg, and all pigs were killed for collection of carcass data. Growth performance and most carcass traits were not affected (P > 0.10) by dietary treatment. These data suggest that reducing CP with amino acid supplementation markedly decreased N excretion without influencing growth performance. Fiber addition to a LPAA diet had little effect on overall N balance or growth performance, but tended to further reduce slurry ammonium N concentration and increase volatile fatty acid concentrations.


Subject(s)
Amino Acids/administration & dosage , Dietary Fiber/administration & dosage , Dietary Proteins/administration & dosage , Nitrogen/metabolism , Swine/growth & development , Amino Acids/pharmacology , Animal Feed , Animal Nutritional Physiological Phenomena , Animals , Dietary Fiber/pharmacology , Dietary Proteins/pharmacology , Dietary Supplements , Fatty Acids, Volatile/analysis , Feces/chemistry , Female , Male , Nitrogen/urine , Random Allocation , Swine/metabolism
5.
J Anim Sci ; 80(4): 1012-9, 2002 Apr.
Article in English | MEDLINE | ID: mdl-12002307

ABSTRACT

Four experiments were conducted to determine the effects of adding a beta-mannanase preparation (Hemicell, ChemGen, Gaithersburg, MD) to corn-soybean meal-based diets on growth performance and nutrient digestibility of weanling and growing-finishing pigs. In Exp. 1, 156 weanling pigs (20 d, 6.27 kg BW) were allotted to four dietary treatments in a randomized complete block design. Treatments were a factorial arrangement of diet complexity (complex vs simple) and addition of 3-mannanase preparation (0 vs 0.05%). Pigs were fed in three dietary phases (Phase 1, d 0 to 14; Phase 2, d 14 to 28; and Phase 3, d 28 to 42). Pigs fed complex diets gained faster and were more efficient (P < 0.05) during Phase 1 compared with pigs fed simple diets. Overall, gain:feed ratio (G:F) tended to be improved (P < 0.10) for pigs fed complex diets and it was improved (P < 0.01) for those fed diets with beta-mannanase. In Exp. 2, 117 pigs (44 d, 13.62 kg BW) were allotted randomly to three dietary treatments. Dietary treatments were 1) a corn-soybean meal-based control, 2) the control diet with soybean oil added to increase metabolizable energy (ME) by 100 kcal/kg, and 3) the control diet with 0.05% beta-mannanase preparation. Beta-mannanase or soybean oil improved (P < 0.05) G:F compared with pigs fed the control diet. In Exp. 3, 60 pigs (22.5 kg BW) were allotted randomly to the three dietary treatments used in Exp. 2. Dietary treatments were fed in three phases (23 to 53 kg, 53 to 82 kg, and 82 to 109 kg with 0.95, 0.80, and 0.65% lysine, respectively). Overall, the addition of soybean oil tended to improve G:F (P < 0.10) compared with that of pigs fed the control diet, and G:F was similar (P > 0.54) for pigs fed diets with soybean oil or beta-mannanase. Also, addition of beta-mannanase increased ADG (P < 0.05) compared with that of pigs fed the control or soybean oil diets. There were no differences (P > or = 0.10) in longissimus muscle area or backfat; however, on a fat-free basis, pigs fed the diet with beta-mannanase had greater (P < 0.05) lean gain than pigs fed the control or soybean oil diets. In Exp. 4, 12 barrows (93 kg BW) were allotted randomly to one of the three dietary treatments used in Exp. 3. Addition of 3-mannanase had no effect (P > 0.10) on energy, nitrogen, phosphorus, or dry matter digestibility. These results suggest that beta-mannanase may improve growth performance in weanling and growing-finishing pigs but has minimal effects on nutrient digestibility.


Subject(s)
Animal Feed , Body Composition/drug effects , Digestion/physiology , Mannosidases/administration & dosage , Soybean Oil/administration & dosage , Swine/growth & development , Animal Nutritional Physiological Phenomena , Animals , Body Composition/physiology , Dietary Supplements , Female , Male , Meat/standards , Random Allocation , Glycine max , Swine/metabolism , Weaning , Weight Gain/drug effects , Weight Gain/physiology , Zea mays , beta-Mannosidase
SELECTION OF CITATIONS
SEARCH DETAIL
...