Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 966-970, 2022 07.
Article in English | MEDLINE | ID: mdl-36086220

ABSTRACT

Cytokine release syndrome (CRS) is a noninfec-tious systemic inflammatory response syndrome condition and a principle severe adverse event common in oncology patients treated with immunotherapies. Accurate monitoring and timely prediction of CRS severity remain a challenge. This study presents an XGBoost-based machine learning algorithm for forecasting CRS severity (no CRS, mild- and severe-CRS classes) in the 24 hours following the time of prediction utilizing the common vital signs and Glasgow coma scale (GCS) questionnaire inputs. The CRS algorithm was developed and evaluated on a cohort of patients (n=1,139) surgically treated for neoplasm with no ICD9 codes for infection or sepsis during a collective 9,892 patient-days of monitoring in ICU settings. Different models were trained with unique feature sets to mimic practical monitoring environments where different types of data availability will exist. The CRS models that incorporated all time series features up to the prediction time showcased a micro-average area under curve (AUC) statistic for the receiver operating characteristic curve (ROC) of 0.94 for the 3 classes of CRS grades. Models developed on a second cohort requiring data within the 24 hours preceding prediction time showcased a relatively lower 0.88 micro-average AUROC as these models did not benefit from implicit information in the data availability. Systematic removal of blood pressure and/or GCS inputs revealed significant decreases (p<0.05) in model performances that confirm the importance of such features for CRS prediction. Accurate CRS prediction and timely intervention can reverse CRS adverse events and maximize the benefit of immunotherapies in oncology patients.


Subject(s)
Cytokine Release Syndrome , Vital Signs , Area Under Curve , Glasgow Coma Scale , Humans , ROC Curve
2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 2252-2257, 2021 11.
Article in English | MEDLINE | ID: mdl-34891735

ABSTRACT

Cough is one of the most common symptoms of COVID-19. It is easily recorded using a smartphone for further analysis. This makes it a great way to track and possibly identify patients with COVID. In this paper, we present a deep learning-based algorithm to identify whether a patient's audio recording contains a cough for subsequent COVID screening. More generally, cough identification is valuable for the remote monitoring and tracking of infections and chronic conditions. Our algorithm is validated on our novel dataset in which COVID-19 patients were instructed to volunteer natural coughs. The validation dataset consists of real patient cough and no cough audio. It was supplemented by files without cough from publicly available datasets that had cough-like sounds including: throat clearing, snoring, etc. Our algorithm had an area under receiver operating characteristic curve statistic of 0.977 on a validation set when making a cough/no cough determination. The specificity and sensitivity of the model on a reserved test set, at a threshold set by the validation set, was 0.845 and 0.976. This algorithm serves as a fundamental step in a larger cascading process to monitor, extract, and analyze COVID-19 patient coughs to detect the patient's health status, symptoms, and potential for deterioration.


Subject(s)
COVID-19 , Cough , Algorithms , Cough/diagnosis , Humans , Records , SARS-CoV-2
3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 2353-2357, 2021 11.
Article in English | MEDLINE | ID: mdl-34891755

ABSTRACT

Since the COVID-19 pandemic began, research has shown promises in building COVID-19 screening tools using cough recordings as a convenient and inexpensive alternative to current testing techniques. In this paper, we present a novel and fully automated algorithm framework for cough extraction and COVID-19 detection using a combination of signal processing and machine learning techniques. It involves extracting cough episodes from audios of a diverse real-world noisy conditions and then screening for the COVID-19 infection based on the cough characteristics. The proposed algorithm was developed and evaluated using self-recorded cough audios collected from COVID-19 patients monitored by Biovitals® Sentinel remote patient management platform and publicly available datasets of various sound recordings. The proposed algorithm achieves a duration Area Under Receiver Operating Characteristic curve (AUROC) of 98.6% in the cough extraction task and a mean cross-validation AUROC of 98.1% in the COVID-19 classification task. These results demonstrate high accuracy and robustness of the proposed algorithm as a fast and easily accessible COVID-19 screening tool and its potential to be used for other cough analysis applications.


Subject(s)
COVID-19 , Cough/diagnosis , Humans , Monitoring, Physiologic , Pandemics , Research Design , SARS-CoV-2 , Sound Recordings
4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 4986-4991, 2020 07.
Article in English | MEDLINE | ID: mdl-33019106

ABSTRACT

Sepsis is a life-threatening clinical syndrome and one of the most expensive conditions treated in hospitals. It is challenging to detect due to the nonspecific clinical signs and the absence of gold standard diagnostics. However, early recognition of sepsis and optimal treatments for sepsis are of paramount importance to improve the condition's management and patient outcomes. This paper aims to delineate key aspects of current sepsis detection systems, including their dependency on clinical expert and laboratory biometric features requiring ongoing critical care intervention, the efficacy of vital sign measures, and the effect of the study population with respect to the precision of sepsis prediction. The AUROC performances of XGBoost models trained on a heterogenous ICU patient group (n=3932) showed significant degradations (p<0.05) as the expert and laboratory biomarker features are removed systematically and vital sign features taken in ICU settings are left. The performance of XGBoost models trained only with vital sign features on a more homogeneous group of ICU patients (n=1927) had a significantly (P<0.05) improved AUPRC to moderate level. The presented results highlight the importance of making a practical machine learning system for sepsis prediction by considering the availability of dominant features as well as personalizing sepsis prediction by configuring it to the specific demographics of a targeted population.


Subject(s)
Machine Learning , Sepsis , Critical Care , Humans , Sepsis/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL
...