Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Physiol ; 15: 1228439, 2024.
Article in English | MEDLINE | ID: mdl-38468704

ABSTRACT

Many methods have been proposed to detect beats in photoplethysmogram (PPG) signals. We present a novel method which uses the Symmetric Projection Attractor Reconstruction (SPAR) method to generate an attractor in a two dimensional phase space from the PPG signal. We can then define a line through the origin of this phase space to be a Poincaré section, as is commonly used in dynamical systems. Beats are detected when the attractor trajectory crosses the Poincaré section. By considering baseline drift, we define an optimal Poincaré section to use. The performance of this method was assessed using the WESAD dataset, achieving median F 1 scores of 74.3% in the Baseline phase, 63.0% during Stress, 93.6% during Amusement, and 97.7% during Meditation. Performance was better than an earlier version of the method, and comparable to one of the best algorithms identified in a recent benchmarking study of 15 beat detection algorithms. In addition, our method performed better than two others in the accuracy of the inter-beat intervals for two resting subjects.

2.
Physiol Meas ; 43(8)2022 08 19.
Article in English | MEDLINE | ID: mdl-35853440

ABSTRACT

The photoplethysmogram (PPG) signal is widely used in pulse oximeters and smartwatches. A fundamental step in analysing the PPG is the detection of heartbeats. Several PPG beat detection algorithms have been proposed, although it is not clear which performs best.Objective:This study aimed to: (i) develop a framework with which to design and test PPG beat detectors; (ii) assess the performance of PPG beat detectors in different use cases; and (iii) investigate how their performance is affected by patient demographics and physiology.Approach:Fifteen beat detectors were assessed against electrocardiogram-derived heartbeats using data from eight datasets. Performance was assessed using theF1score, which combines sensitivity and positive predictive value.Main results:Eight beat detectors performed well in the absence of movement withF1scores of ≥90% on hospital data and wearable data collected at rest. Their performance was poorer during exercise withF1scores of 55%-91%; poorer in neonates than adults withF1scores of 84%-96% in neonates compared to 98%-99% in adults; and poorer in atrial fibrillation (AF) withF1scores of 92%-97% in AF compared to 99%-100% in normal sinus rhythm.Significance:Two PPG beat detectors denoted 'MSPTD' and 'qppg' performed best, with complementary performance characteristics. This evidence can be used to inform the choice of PPG beat detector algorithm. The algorithms, datasets, and assessment framework are freely available.


Subject(s)
Atrial Fibrillation , Photoplethysmography , Adult , Algorithms , Atrial Fibrillation/diagnosis , Benchmarking , Electrocardiography , Heart Rate , Humans , Infant, Newborn
SELECTION OF CITATIONS
SEARCH DETAIL
...