Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Environ Sci ; 12: 1-12, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38845698

ABSTRACT

Coho salmon (Oncorhynchus kisutch) are highly sensitive to 6PPD-Quinone (6PPD-Q). Details of the hydrological and biogeochemical processes controlling spatial and temporal dynamics of 6PPD-Q fate and transport from points of deposition to receiving waters (e.g., streams, estuaries) are poorly understood. To understand the fate and transport of 6PPD and mechanisms leading to salmon mortality Visualizing Ecosystem Land Management Assessments (VELMA), an ecohydrological model developed by US Environmental Protection Agency (EPA), was enhanced to better understand and inform stormwater management planning by municipal, state, and federal partners seeking to reduce stormwater contaminant loads in urban streams draining to the Puget Sound National Estuary. This work focuses on the 5.5 km2 Longfellow Creek upper watershed (Seattle, Washington, United States), which has long exhibited high rates of acute urban runoff mortality syndrome in coho salmon. We present VELMA model results to elucidate these processes for the Longfellow Creek watershed across multiple scales-from 5-m grid cells to the entire watershed. Our results highlight hydrological and biogeochemical controls on 6PPD-Q flow paths, and hotspots within the watershed and its stormwater infrastructure, that ultimately impact contaminant transport to Longfellow Creek and Puget Sound. Simulated daily average 6PPD-Q and available observed 6PPD-Q peak in-stream grab sample concentrations (ng/L) corresponds within plus or minus 10 ng/L. Most importantly, VELMA's high-resolution spatial and temporal analysis of 6PPD-Q hotspots provides a tool for prioritizing the locations, amounts, and types of green infrastructure that can most effectively reduce 6PPD-Q stream concentrations to levels protective of coho salmon and other aquatic species.

2.
PLOS Water ; 2(11): 1-23, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-38783969

ABSTRACT

Modeling large-scale hydrological impacts brought about by site-level green and gray stormwater remediation actions is difficult because urbanized areas are extremely complex dynamic landscapes that include engineered features that, by design, expedite urban runoff to streams, creeks, and other water bodies to reduce urban flooding during storm events. Many urban communities use heavily engineered gray infrastructure to achieve that goal, along with more recent additions of green infrastructure such as rain gardens, bioswales, and riparian corridors. Therefore, successfully characterizing those design details and associated management practices, interactions, and impacts requires a detailed understanding of how fine and course-scale hydrologic processes and routing are altered and managed in urban watersheds. To enhance hydrologic modeling capabilities of urban watersheds, we implemented a number of improvements to an existing ecohydrology model called VELMA-Visualizing Ecosystem Land Management Assessments-including the addition of spatially explicit engineered features that impact urban hydrology (e.g., impervious surfaces, curbed roadways, stormwater routing) and refinement to the computational representations of evapotranspiration by adding impervious surface evaporation. We demonstrate improved capabilities for modeling within complex urbanized watersheds by simulating stream runoff within the Longfellow Creek watershed, City of Seattle, Washington (WA), United States (US) with and without these added urban watershed characteristics. The results demonstrate that the newly improved VELMA model allows for more accurate modeling of hydrology within urban watersheds. Being a fate and transport ecohydrology model, the improved hydrologic flow enhances VELMA's current capacity for modeling nutrient, contaminant, and thermal loadings.

3.
J Environ Manage ; 277: 111418, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33080432

ABSTRACT

Green roofs are among the most popular type of green infrastructure implemented in highly urbanized watersheds due to their low cost and efficient utilization of unused or under-used space. In this study, we examined the effectiveness of green roofs to attenuate stormwater runoff across a large metropolitan area in the Pacific Northwest, United States. We utilized a spatially explicit ecohydrological watershed model called Visualizing Ecosystem Land Management Assessments (VELMA) to simulate the resulting stormwater hydrology of implementing green roofs over 25%, 50%, 75%, and 100% of existing buildings within four urban watersheds in Seattle, Washington, United States. We simulated the effects of two types of green roofs: extensive green roofs, which are characterized by shallow soil profiles and short vegetative cover, and intensive green roofs, which are characterized by deeper soil profiles and can support larger vegetation. While buildings only comprise approximately 10% of the total area within each of the four watersheds, our simulations showed that 100% implementation of green roofs on these buildings can achieve approximately 10-15% and 20-25% mean annual runoff reductions for extensive and intensive green roofs, respectively, over a 28-year simulation. These results provide an upper limit for volume reductions achievable by green roofs in these urban watersheds. We also showed that stormwater runoff reductions are proportionately smaller during higher flow regimes caused by increased precipitation, likely due to the limited storage capacity of saturated green roofs. In general, green roofs can be effective at reducing stormwater runoff, and their effectiveness is limited by both their areal extent and storage capacity. Our results showed that green roof implementation can be an effective stormwater management tool in highly urban areas, and we demonstrated that our modeling approach can be used to assess the watershed-scale hydrologic impacts of the widespread adoption of green roofs across large metropolitan areas.


Subject(s)
Hydrology , Water Movements , Conservation of Natural Resources , Ecosystem , Rain , Washington
4.
PLoS One ; 13(12): e0206439, 2018.
Article in English | MEDLINE | ID: mdl-30566478

ABSTRACT

Landscape solar energy is a significant environmental driver, yet it remains complicated to model well. Several solar radiation models simplify the complexity of light by estimating it at discrete point locations or by averaging values over larger areas. These modeling approaches may be useful in certain cases, but they are unable to provide spatially distributed and temporally dynamic representations of solar energy across entire landscapes. We created a landscape-scale ground-level shade and solar energy model called Penumbra to address this deficiency. Penumbra simulates spatially distributed ground-level shade and incident solar energy at user-defined timescales by modeling local and distant topographic shading and vegetative shading. Spatially resolved inputs of a digital elevation model, a normalized digital surface model, and landscape object transmittance are used to estimate spatial variations in solar energy at user-defined temporal timesteps. The research goals for Penumbra included: 1) simulations of spatiotemporal variations of shade and solar energy caused by both objects and topographic features, 2) minimal user burden and parameterization, 3) flexible user defined temporal parameters, and 4) flexible external model coupling. We test Penumbra's predictive skill by comparing the model's predictions with monitored open and forested sites, and achieve calibrated mean errors ranging from -17.3 to 148.1 µmoles/m2/s. Penumbra is a dynamic model that can produce spatial and temporal representations of shade percentage and ground-level solar energy. Outputs from Penumbra can be used with other ecological models to better understand the health and resilience of aquatic, near stream terrestrial, and upland ecosystems.


Subject(s)
Models, Theoretical , Solar Energy
5.
Environ Model Softw ; 109: 368-379, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30505208

ABSTRACT

Decision-support tools (DSTs) are often produced from collaborations between technical experts and stakeholders to address environmental problems and inform decision making. Studies in the past two decades have provided key insights on the use of DSTs and the importance of bidirectional information flows among technical experts and stakeholders - a process that is variously referred to as co-production, participatory modeling, structured decision making, or simply stakeholder participation. Many of these studies have elicited foundational insights for the broad field of water resources management; however, questions remain on approaches for balancing co-production with uncertainty specifically for watershed modeling decision support tools. In this paper, we outline a simple conceptual model that focuses on the DST development process. Then, using watershed modeling case studies found in the literature, we discuss successful outcomes and challenges associated with embedding various forms of co-production into each stage of the conceptual model. We also emphasize the "3 Cs" (i.e., characterization, calculation, communication) of uncertainty and provide evidence-based suggestions for their incorporation in the watershed modeling DST development process. We conclude by presenting a list of best practices derived from current literature for achieving effective and robust watershed modeling decision-support tools.

6.
Water (Basel) ; 10(10): 1398, 2018.
Article in English | MEDLINE | ID: mdl-30505572

ABSTRACT

Modeling the spatial and temporal dynamics of soil temperature is deterministically complex due to the wide variability of several influential environmental variables, including soil column composition, soil moisture, air temperature, and solar energy. Landscape incident solar radiation is a significant environmental driver that affects both air temperature and ground-level soil energy loading; therefore, inclusion of solar energy is important for generating accurate representations of soil temperature. We used the U.S. Environmental Protection Agency's Oregon Crest-to-Coast (O'CCMoN) Environmental Monitoring Transect dataset to develop and test the inclusion of ground-level solar energy driver data within an existing soil temperature model currently utilized within an ecohydrology model called Visualizing Ecosystem Land Management Assessments (VELMA). The O'CCMoN site data elucidate how localized ground-level solar energy between open and forested landscapes greatly influence the resulting soil temperature. We demonstrate how the inclusion of local ground-level solar energy significantly improves the ability to deterministically model soil temperature at two depths. These results suggest that landscape and watershed-scale models should incorporate spatially distributed solar energy to improve spatial and temporal simulations of soil temperature.

7.
Water (Basel) ; 10(8): 991, 2018.
Article in English | MEDLINE | ID: mdl-31396407

ABSTRACT

Low Impact Development (LID) is an alternative to conventional urban stormwater management practices, which aims at mitigating the impacts of urbanization on water quantity and quality. Plot and local scale studies provide evidence of LID effectiveness; however, little is known about the overall watershed scale influence of LID practices. This is particularly true in watersheds with a land cover that is more diverse than that of urban or suburban classifications alone. We address this watershed-scale gap by assessing the effects of three common LID practices (rain gardens, permeable pavement, and riparian buffers) on the hydrology of a 0.94 km2 mixed land cover watershed. We used a spatially-explicit ecohydrological model, called Visualizing Ecosystems for Land Management Assessments (VELMA), to compare changes in watershed hydrologic responses before and after the implementation of LID practices. For the LID scenarios, we examined different spatial configurations, using 25%, 50%, 75% and 100% implementation extents, to convert sidewalks into rain gardens, and parking lots and driveways into permeable pavement. We further applied 20 m and 40 m riparian buffers along streams that were adjacent to agricultural land cover. The results showed overall increases in shallow subsurface runoff and infiltration, as well as evapotranspiration, and decreases in peak flows and surface runoff across all types and configurations of LID. Among individual LID practices, rain gardens had the greatest influence on each component of the overall watershed water balance. As anticipated, the combination of LID practices at the highest implementation level resulted in the most substantial changes to the overall watershed hydrology. It is notable that all hydrological changes from the LID implementation, ranging from 0.01 to 0.06 km2 across the study watershed, were modest, which suggests a potentially limited efficacy of LID practices in mixed land cover watersheds.

8.
Environ Pollut ; 207: 68-78, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26349068

ABSTRACT

In this study, we used publicly available GIS layers and statistical tree-based modeling (CART and Random Forest) to predict pathogen indicator counts at a regional scale using 88 spatially explicit landscape predictors and 6657 samples from non-estuarine streams in the Oregon Coast Range. A total of 532 frequently sampled sites were parsed down to 93 pathogen sampling sites to control for spatial and temporal biases. This model's 56.5% explanation of variance, was comparable to other regional models, while still including a large number of variables. Analysis showed the most important predictors on bacteria counts to be: forest and natural riparian zones, cattle related activities, and urban land uses. This research confirmed linkages to anthropogenic activities, with the research prediction mapping showing increased bacteria counts in agricultural and urban land use areas and lower counts with more natural riparian conditions.


Subject(s)
Feces/microbiology , Models, Theoretical , Rivers/microbiology , Agriculture , Animals , Bacterial Load , Cattle , Cities , Forests , Oregon , Water Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...