Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Bioeng ; 113(3): 568-75, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26332572

ABSTRACT

Recent advances in the productivity of industrial mammalian cell culture processes have resulted in part in increased cell density. This increase and the associated increase in cellular debris are known to challenge harvest operations, however this understanding is limited and largely qualitative. Part of the issue arises from the heterogeneous size and composition of cellular debris, which makes harvest feed stream extremely difficult to characterize. Improved characterization methods would facilitate the development of clarification approaches that are consistent and scalable. This work describes how both particle size and cholesterol analysis can be used to characterize the feed stream. Particle size analysis by focused beam reflectance and dynamic light scattering are shown to be predictive of centrate filterability under certain harvest conditions. Because of the particle size range limitations of each detector, their applicability is limited to a particular stage or method of clarification. The measurement of cholesterol present in the cell culture supernatant or centrate was successfully used in providing relative amount of lysed cellular debris and enabled us to predict clarification performance of acid precipitated harvest regardless of particle size distribution profile.


Subject(s)
Biological Products/isolation & purification , Biological Products/metabolism , Biotechnology/methods , Cell Culture Techniques
2.
MAbs ; 7(2): 413-28, 2015.
Article in English | MEDLINE | ID: mdl-25706650

ABSTRACT

High titer (>10 g/L) monoclonal antibody (mAb) cell culture processes are typically achieved by maintaining high viable cell densities over longer culture durations. A corresponding increase in the solids and sub-micron cellular debris particle levels are also observed. This higher burden of solids (≥15%) and sub-micron particles typically exceeds the capabilities of a continuous centrifuge to effectively remove the solids without a substantial loss of product and/or the capacity of the harvest filtration train (depth filter followed by membrane filter) used to clarify the centrate. We discuss here the use of a novel and simple two-polymer flocculation method used to harvest mAb from high cell mass cell culture processes. The addition of the polycationic polymer, poly diallyldimethylammonium chloride (PDADMAC) to the cell culture broth flocculates negatively-charged cells and cellular debris via an ionic interaction mechanism. Incorporation of a non-ionic polymer such as polyethylene glycol (PEG) into the PDADMAC flocculation results in larger flocculated particles with faster settling rate compared to PDADMAC-only flocculation. PDADMAC also flocculates the negatively-charged sub-micron particles to produce a feed stream with a significantly higher harvest filter train throughput compared to a typical centrifuged harvest feed stream. Cell culture process variability such as lactate production, cellular debris and cellular densities were investigated to determine the effect on flocculation. Since PDADMAC is cytotoxic, purification process clearance and toxicity assessment were performed.


Subject(s)
Antibodies, Monoclonal/isolation & purification , Polyethylene Glycols/chemistry , Polyethylenes/chemistry , Quaternary Ammonium Compounds/chemistry , Animals , Antibodies, Monoclonal/biosynthesis , Antibodies, Monoclonal/chemistry , CHO Cells , Centrifugation , Cricetinae , Cricetulus , Flocculation , Humans
3.
MAbs ; 5(4): 608-13, 2013.
Article in English | MEDLINE | ID: mdl-23751615

ABSTRACT

Manufacturing-induced disulfide reduction has recently been reported for monoclonal human immunoglobulin gamma (IgG) antibodies, a widely used modality in the biopharmaceutical industry. This effect has been tied to components of the intracellular thioredoxin reduction system that are released upon cell breakage. Here, we describe the effect of process parameters and intrinsic molecule properties on the extent of reduction. Material taken from cell cultures at the end of production displayed large variations in the extent of antibody reduction between different products, including no reduction, when subjected to the same reduction-promoting harvest conditions. Additionally, in a reconstituted model in which process variables could be isolated from product properties, we found that antibody reduction was dependent on the cell line (clone) and cell culture process. A bench-scale model using a thioredoxin/thioredoxin reductase regeneration system revealed that reduction susceptibility depended on not only antibody class but also light chain type; the model further demonstrates that the trend in reducibility was identical to DTT reduction sensitivity following the order IgG1λ > IgG1κ > IgG2λ > IgG2κ. Thus, both product attributes and process parameters contribute to the extent of antibody reduction during production.


Subject(s)
Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/isolation & purification , Disulfides/chemistry , Immunoglobulin G/chemistry , Immunoglobulin G/isolation & purification , Animals , CHO Cells , Cricetinae , Cricetulus , Dithiothreitol/chemistry , Humans , Immunoglobulin kappa-Chains/chemistry , Immunoglobulin kappa-Chains/isolation & purification , Immunoglobulin lambda-Chains/chemistry , Immunoglobulin lambda-Chains/isolation & purification , Oxidation-Reduction , Oxygen/chemistry , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification
4.
Biotechnol Bioeng ; 110(5): 1376-85, 2013 May.
Article in English | MEDLINE | ID: mdl-23242970

ABSTRACT

Agility to schedule and execute cell culture manufacturing campaigns quickly in a multi-product facility will play a key role in meeting the growing demand for therapeutic proteins. In an effort to shorten campaign timelines, maximize plant flexibility and resource utilization, we investigated the initiation of cell culture manufacturing campaigns using CHO cells cryopreserved in large volume bags in place of the seed train process flows that are conventionally used in cell culture manufacturing. This approach, termed FASTEC (Frozen Accelerated Seed Train for Execution of a Campaign), involves cultivating cells to high density in a perfusion bioreactor, and cryopreserving cells in multiple disposable bags. Each run for a manufacturing campaign would then come from a thaw of one or more of these cryopreserved bags. This article reviews the development and optimization of individual steps of the FASTEC bioprocess scheme: scaling up cells to greater than 70 × 10(6) cells/mL and freezing in bags with an optimized controlled rate freezing protocol and using a customized rack configuration. Flow cytometry analysis was also employed to understand the recovery of CHO cells following cryopreservation. Extensive development data were gathered to ensure that the quantity and quality of the drug manufactured using the FASTEC bioprocess scheme was acceptable compared to the conventional seed train process flow. The result of offering comparable manufacturing options offers flexibility to the cell culture manufacturing network.


Subject(s)
Bioreactors , Biotechnology/methods , Cell Culture Techniques/methods , Cryopreservation/methods , Recombinant Proteins/metabolism , Animals , Antibodies, Monoclonal/metabolism , CHO Cells , Cell Survival , Cricetinae , Cricetulus , Flow Cytometry , Perfusion
SELECTION OF CITATIONS
SEARCH DETAIL
...