Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(17)2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37686182

ABSTRACT

Thymalin is an immunomodulatory drug containing a polypeptide extract of thymus that has demonstrated efficacy in the therapy of acute respiratory distress syndrome and chronic obstructive pulmonary disease, as well as in complex therapy related to severe COVID-19 in middle-aged and elderly patients.. KE and EW dipeptides are active substances of Thymalin. There is evidence that KE stimulates cellular immunity and nonspecific resistance in organisms, exerting an activating effect on macrophages, blood lymphocytes, thymocytes, and neutrophils, while EW reduces angiotensin-induced vasoconstriction and preserves endothelium-dependent vascular relaxation by inhibiting ACE2, the target protein of SARS-CoV-2. However, the mechanism of the immunomodulatory action of Thymalin, KE, and EW during COVID-19 remains unclear. To identify the potential mechanism of action underlying the immunomodulatory activity of Thymalin and its active components, EW and KE dipeptides, we assessed inflammatory response in the context of COVID-19. Interactions between EW and KE dipeptides and double-stranded DNA (dsDNA) were investigated by molecular modeling and docking using ICM-Pro. Analysis of the possible effect of EW and KE dipeptides on gene expression and protein synthesis involved in the pathogenesis of COVID-19 was conducted through the use of bioinformatics methods, including a search for promoter sequences in the Eukaryotic Promoter Database, the determination of genes associated with the development of COVID-19 using the PathCards database of human biological pathways (pathway unification database), identification of the relationship between proteins through cluster analysis in the STRING database ('Search Tool for Retrieval of Interacting Genes/Proteins'), and assessment of the functional enrichment of protein-protein interaction (PPI) using the terms of gene ontology (GO) and the Markov cluster algorithm (MCL). After that, in vitro studying of a lipopolysaccharide (LPS)-induced model of inflammation using human peripheral blood mononuclear cells was performed. ELISA was applied to assess the level of cytokines (IL-1ß, IL-6, TNFα) in the supernatant of cells with or without the impact of EW and KE peptides. Blood samples were obtained from four donors; for each cytokine, ELISA was performed 2-4 times, with two parallel experimental or control samples for each experiment (experiments to assess the effects of peptides on LPS-stimulated cells were repeated four times, while additional experiments with unstimulated cells were performed two times). Using molecular docking, GGAG was found to be the best dsDNA sequence in the classical B-form for binding the EW dipeptide, while GCGC is the preferred dsDNA sequence in the curved nucleosomal form for the KE dipeptide. Cluster analysis revealed that potential target genes for the EW and KE peptides encode the AKT1 and AKT2 proteins involved in the development of the cytokine storm. The specific targets for the EW peptide are the ACE2 and CYSLTR1 genes, and specific target for the KE peptide is the CHUK gene. Protein products of the ACE2, CYSLTR1, and CHUK genes are functionally associated with IL-1ß, IL-6, TNF-α, IL-4, and IL-10 cytokines. An in vitro model of an inflammatory reaction demonstrated that Thymalin and EW and KE dipeptides reduced the synthesis of IL-1ß, IL-6, and TNF-α cytokines in human peripheral blood mononuclear cells by 1.4-6.0 times. The immunomodulatory effect of Thymalin under the inflammatory response conditions in COVID-19 is based on the potential ability of its active components, EW and KE dipeptides, to regulate protein synthesis involved in the development of the cytokine storm.


Subject(s)
COVID-19 , Dipeptides , Aged , Middle Aged , Humans , Tumor Necrosis Factor-alpha , Angiotensin-Converting Enzyme 2/genetics , Cytokine Release Syndrome , Interleukin-6 , Leukocytes, Mononuclear , Lipopolysaccharides , Molecular Docking Simulation , SARS-CoV-2 , Cytokines/genetics , Protein Biosynthesis
2.
Biomolecules ; 13(3)2023 03 17.
Article in English | MEDLINE | ID: mdl-36979488

ABSTRACT

The aim of this work is to verify the possibility of transport of 26 biologically active ultrashort peptides (USPs) into cells via LAT and PEPT family transporters. Molecular modeling and computer-assisted docking of peptide ligands revealed that the size and structure of ligand-binding sites of the amino acid transporters LAT1, LAT2, and of the peptide transporter PEPT1 are sufficient for the transport of the 26 biologically active di-, tri-, and tetra-peptides. Comparative analysis of the binding of all possible di- and tri-peptides (8400 compounds) at the binding sites of the LAT and PEPT family transporters has been carried out. The 26 biologically active USPs systematically showed higher binding scores to LAT1, LAT2, and PEPT1, as compared with di- and tri-peptides, for which no biological activity has been established. This indicates an important possible role which LAT and PEPT family transporters may play in a variety of biological activities of the 26 biologically active peptides under investigation in this study. Most of the 26 studied USPs were found to bind to the LAT1, LAT2, and PEPT1 transporters more efficiently than the known substrates or inhibitors of these transporters. Peptides ED, DS, DR, EDR, EDG, AEDR, AEDL, KEDP, and KEDG, and peptoids DS7 and KE17 with negatively charged Asp- or Glu- amino acid residues at the N-terminus and neutral or positively charged residues at the C-terminus of the peptide are found to be the most effective ligands of the transporters under investigation. It can be assumed that the antitumor effect of the KE, EW, EDG, and AEDG peptides could be associated with their ability to inhibit the LAT1, LAT2, and PEPT1 amino acid transporters. The data obtained lead to new prospects for further study of the mechanisms of transport of USP-based drugs into the cell and design of new antitumor drugs.


Subject(s)
Amino Acids , Peptides , Feasibility Studies , Amino Acids/metabolism , Peptides/metabolism , Membrane Transport Proteins/metabolism , Biological Transport
3.
Pharmaceuticals (Basel) ; 14(6)2021 May 27.
Article in English | MEDLINE | ID: mdl-34071923

ABSTRACT

KED and EDR peptides prevent dendritic spines loss in amyloid synaptotoxicity in in vitro model of Alzheimer's disease (AD). The objective of this paper was to study epigenetic mechanisms of EDR and KED peptides' neuroprotective effects on neuroplasticity and dendritic spine morphology in an AD mouse model. Daily intraperitoneal administration of the KED peptide in 5xFAD mice from 2 to 4 months of age at a concentration of 400 µg/kg tended to increase neuroplasticity. KED and EDR peptides prevented dendritic spine loss in 5xFAD-M mice. Their action's possible molecular mechanisms were investigated by molecular modeling and docking of peptides in dsDNA, containing all possible combinations of hexanucleotide sequences. Similar DNA sequences were found in the lowest-energy complexes of the studied peptides with DNA in the classical B-form. EDR peptide has binding sites in the promoter region of CASP3, NES, GAP43, APOE, SOD2, PPARA, PPARG, GDX1 genes. Protein products of these genes are involved in AD pathogenesis. The neuroprotective effect of EDR and KED peptides in AD can be defined by their ability to prevent dendritic spine elimination and neuroplasticity impairments at the molecular epigenetic level.

4.
Sci Adv ; 6(31): eaay9131, 2020 07.
Article in English | MEDLINE | ID: mdl-32789167

ABSTRACT

Despite considerable efforts, mTOR inhibitors have produced limited success in the clinic. To define the vulnerabilities of mTORC1-addicted cancer cells and to find previously unknown therapeutic targets, we investigated the mechanism of piperlongumine, a small molecule identified in a chemical library screen to specifically target cancer cells with a hyperactive mTORC1 phenotype. Sensitivity to piperlongumine was dependent on its ability to suppress RUVBL1/2-TTT, a complex involved in chromatin remodeling and DNA repair. Cancer cells with high mTORC1 activity are subjected to higher levels of DNA damage stress via c-Myc and displayed an increased dependency on RUVBL1/2 for survival and counteracting genotoxic stress. Examination of clinical cancer tissues also demonstrated that high mTORC1 activity was accompanied by high RUVBL2 expression. Our findings reveal a previously unknown role for RUVBL1/2 in cell survival, where it acts as a functional chaperone to mitigate stress levels induced in the mTORC1-Myc-DNA damage axis.


Subject(s)
DNA Helicases , Neoplasms , ATPases Associated with Diverse Cellular Activities/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , DNA Helicases/genetics , DNA Helicases/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Synthetic Lethal Mutations
5.
Cell Mol Life Sci ; 77(13): 2579-2603, 2020 Jul.
Article in English | MEDLINE | ID: mdl-31562565

ABSTRACT

Ebola virus (EBOV) causes severe human disease with a high case fatality rate. The balance of evidence implies that the virus circulates in bats. The molecular basis for host-viral interactions, including the role for phosphorylation during infections, is largely undescribed. To address this, and to better understand the biology of EBOV, the phosphorylation of EBOV proteins was analyzed in virions purified from infected monkey Vero-E6 cells and bat EpoNi/22.1 cells using high-resolution mass spectrometry. All EBOV structural proteins were detected with high coverage, along with phosphopeptides. Phosphorylation sites were identified in all viral structural proteins. Comparison of EBOV protein phosphorylation in monkey and bat cells showed only partial overlap of phosphorylation sites, with shared sites found in NP, VP35, and VP24 proteins, and no common sites in the other proteins. Three-dimensional structural models were built for NP, VP35, VP40, GP, VP30 and VP24 proteins using available crystal structures or by de novo structure prediction to elucidate the potential role of the phosphorylation sites. Phosphorylation of one of the identified sites in VP35, Thr-210, was demonstrated to govern the transcriptional activity of the EBOV polymerase complex. Thr-210 phosphorylation was also shown to be important for VP35 interaction with NP. This is the first study to compare phosphorylation of all EBOV virion proteins produced in primate versus bat cells, and to demonstrate the role of VP35 phosphorylation in the viral life cycle. The results uncover a novel mechanism of EBOV transcription and identify novel targets for antiviral drug development.


Subject(s)
Ebolavirus/genetics , Ebolavirus/metabolism , Gene Expression Regulation, Viral , Nucleoproteins/metabolism , Transcription, Genetic , Viral Core Proteins/metabolism , Animals , Chiroptera , Chlorocebus aethiops , HEK293 Cells , Humans , Nucleocapsid Proteins , Nucleoproteins/chemistry , Phosphorylation , Proteomics , Ribonucleoproteins/metabolism , Vero Cells , Viral Core Proteins/chemistry , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/metabolism , Viral Matrix Proteins/chemistry , Viral Matrix Proteins/metabolism , Viral Proteins/chemistry , Viral Proteins/metabolism , Virion/genetics , Virion/metabolism
6.
Nucleic Acids Res ; 47(20): 10553-10563, 2019 11 18.
Article in English | MEDLINE | ID: mdl-31598715

ABSTRACT

A large variety of short biologically active peptides possesses antioxidant, antibacterial, antitumour, anti-ageing and anti-inflammatory activity, involved in the regulation of neuro-immuno-endocrine system functions, cell apoptosis, proliferation and differentiation. Therefore, the mechanisms of their biological activity are attracting increasing attention not only in modern molecular biology, biochemistry and biophysics, but also in pharmacology and medicine. In this work, we systematically analysed the ability of dipeptides (all possible combinations of the 20 standard amino acids) to bind all possible combinations of tetra-nucleotides in the central part of dsDNA in the classic B-form using molecular docking and molecular dynamics. The vast majority of the dipeptides were found to be unable to bind dsDNA. However, we were able to identify 57 low-energy dipeptide complexes with peptide-dsDNA possessing high selectivity for DNA binding. The analysis of the dsDNA complexes with dipeptides with free and blocked N- and C-terminus showed that selective peptide binding to dsDNA can increase dramatically with the peptide length.


Subject(s)
DNA/chemistry , Dipeptides/chemistry , Molecular Docking Simulation , Nucleotide Motifs , Sequence Analysis, DNA/methods , DNA/metabolism , Dipeptides/metabolism , Protein Binding
7.
J Infect Dis ; 218(suppl_5): S627-S635, 2018 11 22.
Article in English | MEDLINE | ID: mdl-30169869

ABSTRACT

Background: Ebola virus (EBOV) infection causes severe hemorrhagic fever. EBOV transcription is controlled by host protein phosphatase 1 (PP1), which dephosphorylates VP30 protein. We previously developed 1E7-03, a compound targeting a noncatalytic site of PP1 that induced VP30 phosphorylation and inhibited EBOV transcription. Here, we attempted to further improve 1E7-03, which was not stable in murine serum. Results: High-throughput screening with EBOV-green fluorescent protein was conducted on 72 1E7-03 analogs and identified 6 best inhibitory and the least toxic compounds. A parallel in silico screening of compounds from the ZINC database by docking to PP1 identified the best-binding compound C31, which was also present among the top 6 compounds found in the viral screen. C31 showed the best EBOV inhibitory activity among the top 6 compounds and also inhibited EBOV minigenome. C31 bound to the PP1 C-terminal groove in vitro and increased VP30 phosphorylation in cultured cells. C31 demonstrated improved stability in mouse plasma and cell permeability, compared with 1E7-03. It was also detected for 24 hours after injection in mice. Conclusion: C31 represents a novel PP1-targeting EBOV inhibitor with improved pharmacological properties that can be further evaluated for future antifiloviral therapy.


Subject(s)
Antiviral Agents/pharmacology , Ebolavirus/drug effects , Protein Phosphatase 1/metabolism , Virus Replication/drug effects , Animals , Catalytic Domain , Drug Stability , Ebolavirus/physiology , HEK293 Cells , Humans , Mice , Molecular Docking Simulation , Phosphorylation , Protein Phosphatase 1/chemistry , Transcription Factors/metabolism , Viral Proteins/metabolism
8.
Retrovirology ; 15(1): 39, 2018 05 23.
Article in English | MEDLINE | ID: mdl-29792216

ABSTRACT

BACKGROUND: HIV-1 transcription activator protein Tat is phosphorylated in vitro by CDK2 and DNA-PK on Ser-16 residue and by PKR on Tat Ser-46 residue. Here we analyzed Tat phosphorylation in cultured cells and its functionality. RESULTS: Mass spectrometry analysis showed primarily Tat Ser-16 phosphorylation in cultured cells. In vitro, CDK2/cyclin E predominantly phosphorylated Tat Ser-16 and PKR-Tat Ser-46. Alanine mutations of either Ser-16 or Ser-46 decreased overall Tat phosphorylation. Phosphorylation of Tat Ser-16 was reduced in cultured cells treated by a small molecule inhibitor of CDK2 and, to a lesser extent, an inhibitor of DNA-PK. Conditional knock-downs of CDK2 and PKR inhibited and induced one round HIV-1 replication respectively. HIV-1 proviral transcription was inhibited by Tat alanine mutants and partially restored by S16E mutation. Pseudotyped HIV-1 with Tat S16E mutation replicated well, and HIV-1 Tat S46E-poorly, but no live viruses were obtained with Tat S16A or Tat S46A mutations. TAR RNA binding was affected by Tat Ser-16 alanine mutation. Binding to cyclin T1 showed decreased binding of all Ser-16 and Ser-46 Tat mutants with S16D and Tat S46D mutationts showing the strongest effect. Molecular modelling and molecular dynamic analysis revealed significant structural changes in Tat/CDK9/cyclin T1 complex with phosphorylated Ser-16 residue, but not with phosphorylated Ser-46 residue. CONCLUSION: Phosphorylation of Tat Ser-16 induces HIV-1 transcription, facilitates binding to TAR RNA and rearranges CDK9/cyclin T1/Tat complex. Thus, phosphorylation of Tat Ser-16 regulates HIV-1 transcription and may serve as target for HIV-1 therapeutics.


Subject(s)
Gene Expression Regulation, Viral , HIV Infections/metabolism , HIV Infections/virology , HIV-1/physiology , Serine/metabolism , Transcription, Genetic , tat Gene Products, Human Immunodeficiency Virus/metabolism , Amino Acid Sequence , Cells, Cultured , Cyclin T/chemistry , Cyclin T/genetics , Cyclin T/metabolism , Cyclin-Dependent Kinase 2/chemistry , Cyclin-Dependent Kinase 2/genetics , Cyclin-Dependent Kinase 2/metabolism , Cyclin-Dependent Kinase 9/chemistry , Cyclin-Dependent Kinase 9/metabolism , Gene Knockdown Techniques , HIV Infections/genetics , Host-Pathogen Interactions , Humans , Models, Biological , Models, Molecular , Mutation , Phosphorylation , Protein Binding , Protein Conformation , RNA, Viral , Ubiquitination , Virus Replication , eIF-2 Kinase/genetics , tat Gene Products, Human Immunodeficiency Virus/chemistry , tat Gene Products, Human Immunodeficiency Virus/genetics
9.
Nucleic Acids Res ; 45(16): 9788-9796, 2017 Sep 19.
Article in English | MEDLINE | ID: mdl-28934502

ABSTRACT

The RecX protein, a very active natural RecA protein inhibitor, can completely disassemble RecA filaments at nanomolar concentrations that are two to three orders of magnitude lower than that of RecA protein. Based on the structure of RecX protein complex with the presynaptic RecA filament, we designed a short first in class α-helical peptide that both inhibits RecA protein activities in vitro and blocks the bacterial SOS-response in vivo. The peptide was designed using SEQOPT, a novel method for global sequence optimization of protein α-helices. SEQOPT produces artificial peptide sequences containing only 20 natural amino acids with the maximum possible conformational stability at a given pH, ionic strength, temperature, peptide solubility. It also accounts for restrictions due to known amino acid residues involved in stabilization of protein complexes under consideration. The results indicate that a few key intermolecular interactions inside the RecA protein presynaptic complex are enough to reproduce the main features of the RecX protein mechanism of action. Since the SOS-response provides a major mechanism of bacterial adaptation to antibiotics, these results open new ways for the development of antibiotic co-therapy that would not cause bacterial resistance.


Subject(s)
Peptides/chemistry , Peptides/pharmacology , Rec A Recombinases/antagonists & inhibitors , SOS Response, Genetics/drug effects , Circular Dichroism , DNA/metabolism , Escherichia coli/drug effects , Escherichia coli/metabolism , Escherichia coli/radiation effects , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Models, Molecular , Protein Conformation , Protein Stability , Rec A Recombinases/chemistry , Rec A Recombinases/metabolism , SOS Response, Genetics/radiation effects , Ultraviolet Rays
10.
J Comput Chem ; 36(26): 1973-7, 2015 Oct 05.
Article in English | MEDLINE | ID: mdl-26339759

ABSTRACT

We have developed a novel method for calculation of the water bridges that can be formed in the active sites of proteins in the absence or in the presence of small-molecule ligands. We tested its efficiency on a representative set of human ATP-binding proteins, and show that the docking accuracy of ligands can be substantially improved when water bridges are included in the modeling of protein-ligand interactions. Our analysis of binding pocket hydration can be a useful addition to the in silico approaches of Drug Design.


Subject(s)
Carrier Proteins/metabolism , Catalytic Domain/physiology , Computer Simulation , Proteins/chemistry , Water/chemistry , Carrier Proteins/genetics , Humans , Protein Binding
11.
Retrovirology ; 12: 63, 2015 Jul 16.
Article in English | MEDLINE | ID: mdl-26178009

ABSTRACT

BACKGROUND: HIV-1 escapes antiretroviral drugs by integrating into the host DNA and forming a latent transcriptionally silent HIV-1 provirus. This provirus presents the major hurdle in HIV-1 eradication and cure. Transcriptional activation, which is prerequisite for reactivation and the eradication of latent proviruses, is impaired in latently infected T cells due to the lack of host transcription factors, primarily NF-κB and P-TEFb (CDK9/cyclin T1). We and others previously showed that protein phosphatase-1 (PP1) regulates HIV-1 transcription by modulating CDK9 phosphorylation. Recently we have developed a panel of small molecular compounds targeting a non-catalytic site of PP1. RESULTS: Here we generated a new class of sulfonamide-containing compounds that activated HIV-1 in acute and latently infected cells. Among the tested molecules, a small molecule activator of PP1 (SMAPP1) induced both HIV-1 replication and reactivation of latent HIV-1 in chronically infected cultured and primary cells. In vitro, SMAPP1 interacted with PP1 and increased PP1 activity toward a recombinant substrate. Treatment with SMAPP1 increased phosphorylation of CDK9's Ser90 and Thr186 residues, but not Ser175. Proteomic analysis showed upregulation of P-TEFb and PP1 related proteins, including PP1 regulatory subunit Sds22 in SMAPP1-treated T cells. Docking analysis identified a PP1 binding site for SMAPP1 located within the C-terminal binding pocket of PP1. CONCLUSION: We identified a novel class of PP1-targeting compounds that reactivate latent HIV-1 provirus by targeting PP1, increasing CDK9 phosphorylation and enhancing HIV transcription. This compound represents a novel candidate for anti-HIV-1 therapeutics aiming at eradication of latent HIV-1 reservoirs.


Subject(s)
Antiviral Agents/pharmacology , HIV-1/drug effects , Isoquinolines/pharmacology , Protein Phosphatase 1/metabolism , Proviruses/growth & development , Sulfonamides/pharmacology , Virus Activation , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Cells, Cultured , Cyclin-Dependent Kinase 9/metabolism , HIV-1/genetics , HIV-1/physiology , HL-60 Cells , Humans , Isoquinolines/chemistry , Isoquinolines/metabolism , Models, Biological , Molecular Docking Simulation , NF-kappa B/metabolism , Phosphorylation , Positive Transcriptional Elongation Factor B/genetics , Positive Transcriptional Elongation Factor B/metabolism , Protein Binding , Protein Phosphatase 1/genetics , Proteomics , Proviruses/drug effects , Proviruses/genetics , Sulfonamides/chemistry , Sulfonamides/metabolism , Virus Latency
12.
Methods Mol Biol ; 1216: 1-14, 2014.
Article in English | MEDLINE | ID: mdl-25213408

ABSTRACT

Recent studies have elucidated key principles governing folding and stability of α-helices in short peptides and globular proteins. In this chapter we review briefly those principles and describe a protocol for the de novo design of highly stable α-helixes using the SEQOPT algorithm. This algorithm is based on AGADIR, the statistical mechanical theory for helix-coil transitions in monomeric peptides, and the tunneling algorithm for global sequence optimization.


Subject(s)
Peptides/chemistry , Algorithms , Protein Folding , Protein Stability , Protein Structure, Secondary
13.
Structure ; 22(4): 549-59, 2014 Apr 08.
Article in English | MEDLINE | ID: mdl-24613487

ABSTRACT

Eukaryotic TIP49a (Pontin) and TIP49b (Reptin) AAA+ ATPases play essential roles in key cellular processes. How their weak ATPase activity contributes to their important functions remains largely unknown and difficult to analyze because of the divergent properties of TIP49a and TIP49b proteins and of their homo- and hetero-oligomeric assemblies. To circumvent these complexities, we have analyzed the single ancient TIP49 ortholog found in the archaeon Methanopyrus kandleri (mkTIP49). All-atom homology modeling and molecular dynamics simulations validated by biochemical assays reveal highly conserved organizational principles and identify key residues for ATP hydrolysis. An unanticipated crosstalk between Walker B and Sensor I motifs impacts the dynamics of water molecules and highlights a critical role of trans-acting aspartates in the lytic water activation step that is essential for the associative mechanism of ATP hydrolysis.


Subject(s)
Adenosine Triphosphatases/chemistry , Adenosine Triphosphate/chemistry , Archaeal Proteins/chemistry , Euryarchaeota/chemistry , Water/chemistry , Adenosine Triphosphatases/genetics , Archaeal Proteins/genetics , Aspartic Acid/chemistry , Biological Evolution , Conserved Sequence , Escherichia coli/genetics , Escherichia coli/metabolism , Euryarchaeota/enzymology , Gene Expression , Hydrolysis , Molecular Dynamics Simulation , Protein Binding , Protein Interaction Domains and Motifs , Protein Multimerization , Protein Structure, Secondary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics
14.
Biomed Res Int ; 2014: 964964, 2014.
Article in English | MEDLINE | ID: mdl-24524087

ABSTRACT

HIV-1 transcription is regulated by CDK9/cyclin T1, which, unlike a typical cell cycle-dependent kinase, is regulated by associating with 7SK small nuclear ribonuclear protein complex (snRNP). While the protein components of this complex are well studied, the mechanism of the complex formation is still not fully understood. The association of CDK9/cyclin T1 with 7SK snRNP is, in part, regulated by a reversible CDK9 phosphorylation. Here, we present a comprehensive review of the kinases and phosphatases involved in CDK9 phosphorylation and discuss their role in regulation of HIV-1 replication and potential for being targeted for drug development. We propose a novel pathway of HIV-1 transcription regulation via CDK9 Ser-90 phosphorylation by CDK2 and CDK9 Ser-175 dephosphorylation by protein phosphatase-1.


Subject(s)
Cyclin-Dependent Kinase 9 , HIV-1/physiology , Phosphorylation , HIV Infections/physiopathology , HIV Infections/virology , Host-Pathogen Interactions/physiology , Humans , Transcription, Genetic
15.
Retrovirology ; 9: 94, 2012 Nov 09.
Article in English | MEDLINE | ID: mdl-23140174

ABSTRACT

BACKGROUND: HIV-1 transcription is activated by the viral Tat protein that recruits host positive transcription elongation factor-b (P-TEFb) containing CDK9/cyclin T1 to the HIV-1 promoter. P-TEFb in the cells exists as a lower molecular weight CDK9/cyclin T1 dimer and a high molecular weight complex of 7SK RNA, CDK9/cyclin T1, HEXIM1 dimer and several additional proteins. Our previous studies implicated CDK2 in HIV-1 transcription regulation. We also found that inhibition of CDK2 by iron chelators leads to the inhibition of CDK9 activity, suggesting a functional link between CDK2 and CDK9. Here, we investigate whether CDK2 phosphorylates CDK9 and regulates its activity. RESULTS: The siRNA-mediated knockdown of CDK2 inhibited CDK9 kinase activity and reduced CDK9 phosphorylation. Stable shRNA-mediated CDK2 knockdown inhibited HIV-1 transcription, but also increased the overall level of 7SK RNA. CDK9 contains a motif (90SPYNR94) that is consensus CDK2 phosphorylation site. CDK9 was phosphorylated on Ser90 by CDK2 in vitro. In cultured cells, CDK9 phosphorylation was reduced when Ser90 was mutated to an Ala. Phosphorylation of CDK9 on Ser90 was also detected with phospho-specific antibodies and it was reduced after the knockdown of CDK2. CDK9 expression decreased in the large complex for the CDK9-S90A mutant and was correlated with a reduced activity and an inhibition of HIV-1 transcription. In contrast, the CDK9-S90D mutant showed a slight decrease in CDK9 expression in both the large and small complexes but induced Tat-dependent HIV-1 transcription. Molecular modeling showed that Ser 90 of CDK9 is located on a flexible loop exposed to solvent, suggesting its availability for phosphorylation. CONCLUSION: Our data indicate that CDK2 phosphorylates CDK9 on Ser 90 and thereby contributes to HIV-1 transcription. The phosphorylation of Ser90 by CDK2 represents a novel mechanism of HIV-1 regulated transcription and provides a new strategy for activation of latent HIV-1 provirus.


Subject(s)
Cyclin-Dependent Kinase 2/metabolism , Cyclin-Dependent Kinase 9/metabolism , Gene Expression Regulation, Viral , HIV-1/genetics , Transcription, Genetic , Cell Line , Cyclin-Dependent Kinase 2/genetics , Cyclin-Dependent Kinase 9/chemistry , Enzyme Activation/genetics , Gene Silencing , Humans , Models, Molecular , Mutation , Phosphorylation , Positive Transcriptional Elongation Factor B/metabolism , Protein Binding , Protein Conformation , RNA Interference , RNA, Viral/genetics , RNA, Viral/metabolism , Serine/chemistry
16.
Structure ; 20(8): 1321-31, 2012 Aug 08.
Article in English | MEDLINE | ID: mdl-22748767

ABSTRACT

The TIP49a and TIP49b proteins belong to the family of AAA+ ATPases and play essential roles in vital processes such as transcription, DNA repair, snoRNP biogenesis, and chromatin remodeling. We report the crystal structure of a TIP49b hexamer and the comparative analysis of large-scale conformational flexibility of TIP49a, TIP49b, and TIP49a/TIP49b complexes using molecular modeling and molecular dynamics simulations in a water environment. Our results establish key principles of domain mobility that affect protein conformation and biochemical properties, including a mechanistic basis for the downregulation of ATPase activity upon protein hexamerization. These approaches, applied to the lik-TIP49b mutant reported to possess enhanced DNA-independent ATPase activity, help explain how a three-amino acid insertion remotely affects the structure and conformational dynamics of the ATP binding and hydrolysis pocket while uncoupling ATP hydrolysis from DNA binding. This might be similar to the effects of conformations adopted by TIP49 heterohexamers.


Subject(s)
Carrier Proteins/chemistry , DNA Helicases/chemistry , ATPases Associated with Diverse Cellular Activities , Adenosine Triphosphate/chemistry , Catalytic Domain , Crystallography, X-Ray , Enzyme Stability , Humans , Hydrogen Bonding , Hydrolysis , Molecular Dynamics Simulation , Protein Binding , Protein Structure, Quaternary , Protein Structure, Secondary
17.
J Comput Biol ; 16(4): 555-64, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19361327

ABSTRACT

An anomalous (i.e., significantly different from genome-average) GC-content is often used as one of the markers to reveal the events of horizontal gene transfer (HGT). Unfortunately, results obtained by the traditional fixed-length window analysis strongly depend on an arbitrary selection of DNA window length. Here we present a new method for genome-wide statistical analysis of GC-content without that drawback. The method is based on a set of nonparametric statistical tests and is capable of providing reliable estimations of both a local and global GC-content, and thus can identify small local areas (as short as 30 bp) with anomalous GC-content in a bacterial genome. The tests, applied to a well-studied bacterial genome of Escherichia coli K-12, show that approximately 21% of the genome belongs to the anomalous GC-content areas. Among top 23 anomalous GC-content areas, seven correspond to the annotated prophages, four to Rhs elements, and two to IS elements. A remaining 10 areas contain putative horizontally transferred DNA and genes with still unknown functions. Software is available at http://mml.spbstu.ru/gcstat.


Subject(s)
Base Composition/genetics , DNA, Bacterial/genetics , Escherichia coli/genetics , Genome, Bacterial/genetics , Statistics, Nonparametric
18.
J Pept Sci ; 15(5): 359-65, 2009 May.
Article in English | MEDLINE | ID: mdl-19222027

ABSTRACT

The rational design of peptide and protein helices is not only of practical importance for protein engineering but also is a useful approach in attempts to improve our understanding of protein folding. Recent modifications of theoretical models of helix-coil transitions allow accurate predictions of the helix stability of monomeric peptides in water and provide new possibilities for protein design. We report here a new method for the design of alpha-helices in peptides and proteins using AGADIR, the statistical mechanical theory for helix-coil transitions in monomeric peptides and the tunneling algorithm of global optimization of multidimensional functions for optimization of amino acid sequences. CD measurements of helical content of peptides with optimized sequences indicate that the helical potential of protein amino acids is high enough to allow formation of stable alpha-helices in peptides as short as of 10 residues in length. The results show the maximum achievable helix content (HC) of short peptides with fully optimized sequences at 5 degrees C is expected to be approximately 70-75%. Under certain conditions the method can be a powerful practical tool for protein engineering. Unlike traditional approaches that are often used to increase protein stability by adding a few favorable interactions to the protein structure, this method deals with all possible sequences of protein helices and selects the best one from them.


Subject(s)
Algorithms , Models, Theoretical , Peptides/chemistry , Proteins/chemistry , Amino Acid Sequence , Molecular Sequence Data , Protein Structure, Secondary
19.
J Comput Chem ; 28(12): 1974-89, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17407094

ABSTRACT

A new method for approximate analytical calculations of solvent accessible surface area (SASA) for arbitrary molecules and their gradients with respect to their atomic coordinates was developed. This method is based on the recursive procedure of pairwise joining of neighboring atoms. Unlike other available methods of approximate SASA calculations, the method has no empirical parameters, and therefore can be used with comparable accuracy in calculations of SASA in folded and unfolded conformations of macromolecules of any chemical nature. As shown by tests with globular proteins in folded conformations, average errors in absolute atomic surface area is around 1 A2, while for unfolded protein conformations it varies from 1.65 to 1.87 A2. Computational times of the method are comparable with those by GETAREA, one of the fastest exact analytical methods available today.


Subject(s)
Macrocyclic Compounds/chemistry , Solvents/chemistry , Molecular Structure , Surface Properties
20.
Proteins ; 65(2): 296-304, 2006 Nov 01.
Article in English | MEDLINE | ID: mdl-16909421

ABSTRACT

RecA protein is a central enzyme in homologous DNA recombination, repair and other forms of DNA metabolism in bacteria. It functions as a flexible helix-shaped filament bound on stretched single-stranded or double-stranded DNA in the presence of ATP. In this work, we present an atomic level model for conformational transitions of the RecA filament. The model describes small movements of the RecA N-terminal domain due to coordinated rotation of main chain dihedral angles of two amino acid residues (Psi/Lys23 and Phi/Gly24), while maintaining unchanged the RecA intersubunit interface. The model is able to reproduce a wide range of observed helix pitches in transitions between compressed and stretched conformations of the RecA filament. Predictions of the model are in agreement with Small Angle Neutron Scattering (SANS) measurements of the filament helix pitch in RecA::ADP-AlF(4) complex at various salt concentrations.


Subject(s)
Escherichia coli/chemistry , Rec A Recombinases/chemistry , Rec A Recombinases/metabolism , Amino Acids/chemistry , Amino Acids/genetics , Amino Acids/metabolism , Dimerization , Escherichia coli/genetics , Models, Molecular , Pliability , Protein Binding , Protein Conformation , Rec A Recombinases/genetics , Sodium Chloride , Static Electricity
SELECTION OF CITATIONS
SEARCH DETAIL
...