Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Prod Res ; 37(12): 1954-1960, 2023 Jun.
Article in English | MEDLINE | ID: mdl-35975755

ABSTRACT

A set of 12 abietane diterpene derivatives have been synthesised by the Ugi-four component reaction (Ugi-4CR) and tested for cytotoxicity and activity against influenza virus A/Puerto Rico/8/34 (H1N1) and SARS-CoV-2 pseudovirus. Five dipeptide derivatives demonstrated a selectivity index (SI) higher than 10 and IC50 values from 2 to 32 µM against influenza virus. Compound 11 was found to be a lead with SI of 200, and time-of-addition experiments showed the viral entry into the cell and the binding of the virus to the receptor as a possible target. Compound 7 was the only one showed weak anti-SARS-CoV-2 activity with EC50 value of 80.96 µM. Taken together, our data suggest the potency of diterpene acids-Ugi products as new effective anti-influenza compounds.


Subject(s)
COVID-19 , Diterpenes , Influenza A Virus, H1N1 Subtype , Humans , SARS-CoV-2 , Abietanes/pharmacology , Abietanes/chemistry
2.
Pharmaceuticals (Basel) ; 15(11)2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36422520

ABSTRACT

Respiratory syncytial virus (RSV) causes acute respiratory infections, thus, posing a serious threat to the health of infants, children, and elderly people. In this study, we have discovered a series of potent RSV entry inhibitors with the (-)-borneol scaffold. The active compounds 3b, 5a, 5c, 7b, 9c, 10b, 10c, and 14b were found to exhibit activity against RSV A strain A2 in HEp-2 cells. The most active substances, 3b (IC50 = 8.9 µM, SI = 111) and 5a (IC50 = 5.0 µM, SI = 83), displayed more potency than the known antiviral agent Ribavirin (IC50 = 80.0 µM, SI = 50). Time-of-addition assay and temperature shift studies demonstrated that compounds 3b, 5a, and 6b inhibited RSV entry, probably by interacting with the viral F protein that mediated membrane fusion, while they neither bound to G protein nor inhibited RSV attachment to the target cells. Appling procedures of molecular modeling and molecular dynamics, the binding mode of compounds 3b and 5a was proposed. Taken together, the results of this study suggest (-)-borneol esters to be promising lead compounds for developing new anti-RSV agents.

3.
Phytochem Lett ; 51: 91-96, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35935343

ABSTRACT

A chemical library was constructed based on the resin acids (abietic, dehydroabietic, and 12-formylabietic) and its diene adducts (maleopimaric and quinopimaric acid derivatives). The one-pot three-component CuCl-catalyzed aminomethylation of the abietane diterpenoid propargyl derivatives was carried out by formaldehyde and secondary amines (diethylamine, pyrrolidine, morpholine, and homopiperazine). All compounds were tested for cytotoxicity and antiviral activity against influenza virus A/Puerto Rico/8/34 (H1N1) in MDCK cells and SARS-CoV-2 pseudovirus in BHK-21-hACE2 cells. Among 21 tested compounds, six derivatives demonstrated a selectivity index (SI) higher than 10, and their IC50 values ranged from 0.19 to 5.0 µM. Moreover, two derivatives exhibited potent anti-SARS-CoV-2 infection activity. The antiviral activity and toxicity strongly depended on the nature of the diterpene core and heterocyclic substituent. Compounds 12 and 21 bearing pyrrolidine moieties demonstrated the highest virus-inhibiting activity with SIs of 128.6 and 146.8, respectively, and appeared to be most effective when added at the time points 0-10 and 1-10 h of the viral life cycle. Molecular docking and dynamics modeling were adopted to investigate the binding mode of compound 12 into the binding pocket of influenza A virus M2 protein. Compound 9 with a pyrrolidine group at C20 of 17-formylabietic acid was a promising anti-SARS-CoV-2 agent with an EC50 of 10.97 µM and a good SI value > 18.2. Collectively, our data suggested the potency of diterpenic Mannich bases as effective anti-influenza and anti-COVID-19 compounds.

4.
Molecules ; 27(7)2022 Mar 31.
Article in English | MEDLINE | ID: mdl-35408661

ABSTRACT

Respiratory syncytial virus infection (RSVI) is an acute medical and social problem in many countries globally. Infection is most dangerous for infants under one year old and the elderly. Despite its epidemiological relevance, only two drugs are registered for clinical use against RSVI: ribavirin (approved in a limited number of countries due to side effects) and palivizumab (Synagis), which is intended only for the prevention, but not the treatment, of infection. Currently, various research groups are searching for new drugs against RSV, with three main areas of research: small molecules, polymeric drugs (proteins and peptides), and plant extracts. This review is devoted to currently developed protein and peptide anti-RSV drugs.


Subject(s)
Respiratory Syncytial Virus Infections , Respiratory Tract Infections , Aged , Antiviral Agents/therapeutic use , Humans , Infant , Palivizumab/therapeutic use , Peptides/pharmacology , Peptides/therapeutic use , Respiratory Syncytial Virus Infections/drug therapy , Respiratory Tract Infections/drug therapy
5.
Molecules ; 26(24)2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34946573

ABSTRACT

Respiratory syncytial virus (RSV) is a critical cause of infant mortality. However, there are no vaccines and adequate drugs for its treatment. We showed, for the first time, that O-linked coumarin-monoterpene conjugates are effective RSV inhibitors. The most potent compounds are active against both RSV serotypes, A and B. According to the results of the time-of-addition experiment, the conjugates act at the early stages of virus cycle. Based on molecular modelling data, RSV F protein may be considered as a possible target.


Subject(s)
Antiviral Agents/pharmacology , Coumarins/pharmacology , Monoterpenes/pharmacology , Respiratory Syncytial Virus, Human/drug effects , Antiviral Agents/chemistry , Coumarins/chemistry , Microbial Sensitivity Tests , Models, Molecular , Molecular Structure , Monoterpenes/chemistry , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...