Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Genes (Basel) ; 15(5)2024 May 11.
Article in English | MEDLINE | ID: mdl-38790244

ABSTRACT

BACKGROUND: Leukoencephalopathy with brainstem and spinal cord involvement and lactate elevation is an inherited disease caused by pathogenic biallelic variants in the gene DARS2, which encodes mitochondrial aspartyl-tRNA synthetase. This disease is characterized by slowly progressive spastic gait, cerebellar symptoms, and leukoencephalopathy with brainstem and spinal cord involvement. CASE PRESENTATION: Peripheral blood samples were collected from four patients from four unrelated families to extract genomic DNA. All patients underwent partial exon analysis of the DARS2 gene using Sanger sequencing, which detected the c.228-21_228-20delinsC variant in a heterozygous state. Further DNA from three patients was analyzed using a next-generation sequencing-based custom AmpliSeq™ panel for 59 genes associated with leukodystrophies, and one of the patients underwent whole genome sequencing. We identified a novel pathogenic variant c.1675-1256_*115delinsGCAACATTTCGGCAACATTCCAACC in the DARS2 gene. Three patients (patients 1, 2, and 4) had slowly progressive cerebellar ataxia, and two patients (patients 1 and 2) had spasticity. In addition, two patients (patients 2 and 4) showed signs of axonal neuropathy, such as decreased tendon reflexes and loss of distal sensitivity. Three patients (patients 1, 2, and 3) also had learning difficulties. It should be noted the persistent presence of characteristic changes in brain MRI in all patients, which emphasizes its importance as the main diagnostic tool for suspicion and subsequent confirmation of LBSL. Conclusions: We found a novel indel variant in the DARS2 gene in four patients with LBSL and described their clinical and genetic characteristics. These results expand the mutational spectrum of LBSL and aim to improve the laboratory diagnosis of this form of leukodystrophy.


Subject(s)
Aspartate-tRNA Ligase , INDEL Mutation , Leukoencephalopathies , Humans , Aspartate-tRNA Ligase/genetics , Aspartate-tRNA Ligase/deficiency , Male , Leukoencephalopathies/genetics , Leukoencephalopathies/pathology , Female , Brain Stem/pathology , Brain Stem/diagnostic imaging , Child , Lactic Acid/blood , Russia , Adult , Spinal Cord/pathology , Spinal Cord/diagnostic imaging , Adolescent , Mitochondrial Diseases
2.
Genes (Basel) ; 13(12)2022 11 23.
Article in English | MEDLINE | ID: mdl-36553453

ABSTRACT

Spastic paraplegia and psychomotor retardation with or without seizures (SPPRS, OMIM 616756) is a rare genetic disease caused by biallelic pathogenic variants in the HACE1 gene. Originally, these mutations have been reported to be implicated in tumor predisposition. Nonetheless, via whole exome sequencing in 2015, HACE1 mutations were suggested to be the cause of a new autosomal recessive neurodevelopmental disorder, which is characterized by spasticity, muscular hypotonia, and intellectual disability. To date, 14 HACE1 pathogenic variants have been described; these variants have a loss-of-function effect that leads to clinical presentations with variable severities. However, gross deletions in the HACE1 gene have not yet been mentioned as a cause of spastic paraplegia. Here, we report a clinical case involving a 2-year-old male presenting with spasticity, mainly affecting the lower limbs, and developmental delay. Exome sequencing, chromosomal microarray analysis, and mRNA analysis were used to identify the causative gene. We revealed that the clinical findings were due to previously undescribed HACE1 biallelic deletions. We identified the deletion of exon 7: c.(534+1_535-1)_(617+1_618-1)del (NM_020771.4) and the gross deletion in the 6q16.3 locus, which affected the entire HACE1 gene: g.105018931_105337494del, (GRCh37). A comprehensive diagnostic approach for the patients with originally homozygous mutations in HACE1 is required since false homozygosity results are possible. More than 80% of the described mutations were reported to be homozygous. Initial hemizygosity is hard to detect by quantitative methods, and this may challenge molecular diagnostic identification in patients with spastic paraplegia.


Subject(s)
Spastic Paraplegia, Hereditary , Male , Humans , Child, Preschool , Spastic Paraplegia, Hereditary/genetics , Spastic Paraplegia, Hereditary/diagnosis , Mutation , Paraplegia/genetics , Exons , Ubiquitin-Protein Ligases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...