Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Syst Biol ; 19(3): e10631, 2023 03 09.
Article in English | MEDLINE | ID: mdl-36688815

ABSTRACT

Genetic alterations in cancer cells trigger oncogenic transformation, a process largely mediated by the dysregulation of kinase and transcription factor (TF) activities. While the mutational profiles of thousands of tumours have been extensively characterised, the measurements of protein activities have been technically limited until recently. We compiled public data of matched genomics and (phospho)proteomics measurements for 1,110 tumours and 77 cell lines that we used to estimate activity changes in 218 kinases and 292 TFs. Co-regulation of kinase and TF activities reflects previously known regulatory relationships and allows us to dissect genetic drivers of signalling changes in cancer. We find that loss-of-function mutations are not often associated with the dysregulation of downstream targets, suggesting frequent compensatory mechanisms. Finally, we identified the activities most differentially regulated in cancer subtypes and showed how these can be linked to differences in patient survival. Our results provide broad insights into the dysregulation of protein activities in cancer and their contribution to disease severity.


Subject(s)
Neoplasms , Humans , Neoplasms/genetics , Signal Transduction , Genomics , Proteomics/methods , Gene Expression Regulation
2.
Cell Syst ; 10(5): 384-396.e9, 2020 05 20.
Article in English | MEDLINE | ID: mdl-32437683

ABSTRACT

Complex networks of regulatory relationships between protein kinases comprise a major component of intracellular signaling. Although many kinase-kinase regulatory relationships have been described in detail, these tend to be limited to well-studied kinases whereas the majority of possible relationships remains unexplored. Here, we implement a data-driven, supervised machine learning method to predict human kinase-kinase regulatory relationships and whether they have activating or inhibiting effects. We incorporate high-throughput data, kinase specificity profiles, and structural information to produce our predictions. The results successfully recapitulate previously annotated regulatory relationships and can reconstruct known signaling pathways from the ground up. The full network of predictions is relatively sparse, with the vast majority of relationships assigned low probabilities. However, it nevertheless suggests denser modes of inter-kinase regulation than normally considered in intracellular signaling research. A record of this paper's transparent peer review process is included in the Supplemental Information.


Subject(s)
Intracellular Signaling Peptides and Proteins/metabolism , Protein Interaction Mapping/methods , Protein Kinases/metabolism , Computational Biology/methods , Gene Regulatory Networks , Humans , Intracellular Signaling Peptides and Proteins/physiology , Phosphorylation , Protein Kinases/physiology , Signal Transduction/physiology , Substrate Specificity , Supervised Machine Learning
SELECTION OF CITATIONS
SEARCH DETAIL
...