Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
iScience ; 27(1): 108288, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38179063

ABSTRACT

To elucidate host response elements that define impending decompensation during SARS-CoV-2 infection, we enrolled subjects hospitalized with COVID-19 who were matched for disease severity and comorbidities at the time of admission. We performed combined single-cell RNA sequencing (scRNA-seq) and single-cell assay for transposase-accessible chromatin using sequencing (scATAC-seq) on peripheral blood mononuclear cells (PBMCs) at admission and compared subjects who improved from their moderate disease with those who later clinically decompensated and required invasive mechanical ventilation or died. Chromatin accessibility and transcriptomic immune profiles were markedly altered between the two groups, with strong signals in CD4+ T cells, inflammatory T cells, dendritic cells, and NK cells. Multiomic signature scores at admission were tightly associated with future clinical deterioration (auROC 1.0). Epigenetic and transcriptional changes in PBMCs reveal early, broad immune dysregulation before typical clinical signs of decompensation are apparent and thus may act as biomarkers to predict future severity in COVID-19.

2.
Sci Rep ; 13(1): 22554, 2023 12 18.
Article in English | MEDLINE | ID: mdl-38110534

ABSTRACT

Diagnostic limitations challenge management of clinically indistinguishable acute infectious illness globally. Gene expression classification models show great promise distinguishing causes of fever. We generated transcriptional data for a 294-participant (USA, Sri Lanka) discovery cohort with adjudicated viral or bacterial infections of diverse etiology or non-infectious disease mimics. We then derived and cross-validated gene expression classifiers including: 1) a single model to distinguish bacterial vs. viral (Global Fever-Bacterial/Viral [GF-B/V]) and 2) a two-model system to discriminate bacterial and viral in the context of noninfection (Global Fever-Bacterial/Viral/Non-infectious [GF-B/V/N]). We then translated to a multiplex RT-PCR assay and independent validation involved 101 participants (USA, Sri Lanka, Australia, Cambodia, Tanzania). The GF-B/V model discriminated bacterial from viral infection in the discovery cohort an area under the receiver operator curve (AUROC) of 0.93. Validation in an independent cohort demonstrated the GF-B/V model had an AUROC of 0.84 (95% CI 0.76-0.90) with overall accuracy of 81.6% (95% CI 72.7-88.5). Performance did not vary with age, demographics, or site. Host transcriptional response diagnostics distinguish bacterial and viral illness across global sites with diverse endemic pathogens.


Subject(s)
Bacterial Infections , Virus Diseases , Humans , Virus Diseases/diagnosis , Virus Diseases/genetics , Biomarkers , Bacterial Infections/diagnosis , Bacterial Infections/genetics , Cambodia , Australia
3.
Nat Commun ; 14(1): 7897, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38036525

ABSTRACT

Immune responses to SARS-CoV-2 primarily target the receptor binding domain of the spike protein, which continually mutates to escape acquired immunity. Other regions in the spike S2 subunit, such as the stem helix and the segment encompassing residues 815-823 adjacent to the fusion peptide, are highly conserved across sarbecoviruses and are recognized by broadly reactive antibodies, providing hope that vaccines targeting these epitopes could offer protection against both current and emergent viruses. Here we employ computational modeling to design scaffolded immunogens that display the spike 815-823 peptide and the stem helix epitopes without the distracting and immunodominant receptor binding domain. These engineered proteins bind with high affinity and specificity to the mature and germline versions of previously identified broadly protective human antibodies. Epitope scaffolds interact with both sera and isolated monoclonal antibodies with broadly reactivity from individuals with pre-existing SARS-CoV-2 immunity. When used as immunogens, epitope scaffolds elicit sera with broad betacoronavirus reactivity and protect as "boosts" against live virus challenge in mice, illustrating their potential as components of a future pancoronavirus vaccine.


Subject(s)
Antibodies, Viral , SARS-CoV-2 , Humans , Animals , Mice , Epitopes , Immunodominant Epitopes , Peptides , Spike Glycoprotein, Coronavirus , Antibodies, Neutralizing
4.
PeerJ ; 11: e16310, 2023.
Article in English | MEDLINE | ID: mdl-37901455

ABSTRACT

We collected oral and/or rectal swabs and serum from dogs and cats living in homes with SARS-CoV-2-PCR-positive persons for SARS-CoV-2 PCR and serology testing. Pre-COVID-19 serum samples from dogs and cats were used as negative controls, and samples were tested in duplicate at different timepoints. Raw ELISA results scrutinized relative to known negative samples suggested that cut-offs for IgG seropositivity may require adjustment relative to previously proposed values, while proposed cut-offs for IgM require more extensive validation. A small number of pet dogs (2/43, 4.7%) and one cat (1/21, 4.8%) were positive for SARS-CoV-2 RNA, and 28.6 and 37.5% of cats and dogs were positive for anti-SARS-CoV-2 IgG, respectively.


Subject(s)
COVID-19 , Cat Diseases , Dog Diseases , Animals , Cats , Dogs , SARS-CoV-2/genetics , COVID-19/diagnosis , Pets , North Carolina/epidemiology , RNA, Viral/genetics , Dog Diseases/diagnosis , Immunoglobulin G
5.
bioRxiv ; 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37425926

ABSTRACT

Variations in DNA methylation patterns in human tissues have been linked to various environmental exposures and infections. Here, we identified the DNA methylation signatures associated with multiple exposures in nine major immune cell types derived from peripheral blood mononuclear cells (PBMCs) at single-cell resolution. We performed methylome sequencing on 111,180 immune cells obtained from 112 individuals who were exposed to different viruses, bacteria, or chemicals. Our analysis revealed 790,662 differentially methylated regions (DMRs) associated with these exposures, which are mostly individual CpG sites. Additionally, we integrated methylation and ATAC-seq data from same samples and found strong correlations between the two modalities. However, the epigenomic remodeling in these two modalities are complementary. Finally, we identified the minimum set of DMRs that can predict exposures. Overall, our study provides the first comprehensive dataset of single immune cell methylation profiles, along with unique methylation biomarkers for various biological and chemical exposures.

6.
J Public Health Manag Pract ; 29(6): 863-873, 2023.
Article in English | MEDLINE | ID: mdl-37379511

ABSTRACT

OBJECTIVE: Scalable strategies to reduce the time burden and increase contact tracing efficiency are crucial during early waves and peaks of infectious transmission. DESIGN: We enrolled a cohort of SARS-CoV-2-positive seed cases into a peer recruitment study testing social network methodology and a novel electronic platform to increase contact tracing efficiency. SETTING: Index cases were recruited from an academic medical center and requested to recruit their local social contacts for enrollment and SARS-CoV-2 testing. PARTICIPANTS: A total of 509 adult participants enrolled over 19 months (384 seed cases and 125 social peers). INTERVENTION: Participants completed a survey and were then eligible to recruit their social contacts with unique "coupons" for enrollment. Peer participants were eligible for SARS-CoV-2 and respiratory pathogen screening. MAIN OUTCOME MEASURES: The main outcome measures were the percentage of tests administered through the study that identified new SARS-CoV-2 cases, the feasibility of deploying the platform and the peer recruitment strategy, the perceived acceptability of the platform and the peer recruitment strategy, and the scalability of both during pandemic peaks. RESULTS: After development and deployment, few human resources were needed to maintain the platform and enroll participants, regardless of peaks. Platform acceptability was high. Percent positivity tracked with other testing programs in the area. CONCLUSIONS: An electronic platform may be a suitable tool to augment public health contact tracing activities by allowing participants to select an online platform for contact tracing rather than sitting for an interview.


Subject(s)
COVID-19 , Adult , Humans , COVID-19/epidemiology , COVID-19/prevention & control , Public Health , COVID-19 Testing , SARS-CoV-2 , Contact Tracing/methods
8.
bioRxiv ; 2023 Sep 17.
Article in English | MEDLINE | ID: mdl-36909627

ABSTRACT

Immune responses to SARS-CoV-2 primarily target the receptor binding domain of the spike protein, which continually mutates to escape acquired immunity. Other regions in the spike S2 subunit, such as the stem helix and the segment encompassing residues 815-823 adjacent to the fusion peptide, are highly conserved across sarbecoviruses and are recognized by broadly reactive antibodies, providing hope that vaccines targeting these epitopes could offer protection against both current and emergent viruses. Here we employed computational modeling to design scaffolded immunogens that display the spike 815-823 peptide and the stem helix epitopes without the distracting and immunodominant RBD. These engineered proteins bound with high affinity and specificity to the mature and germline versions of previously identified broadly protective human antibodies. Epitope scaffolds interacted with both sera and isolated monoclonal antibodies with broadly reactivity from individuals with pre-existing SARS-CoV-2 immunity. When used as immunogens, epitope scaffolds elicited sera with broad betacoronavirus reactivity and protected as "boosts" against live virus challenge in mice, illustrating their potential as components of a future pancoronavirus vaccine.

9.
J Infect Dis ; 227(7): 864-872, 2023 04 12.
Article in English | MEDLINE | ID: mdl-35759279

ABSTRACT

BACKGROUND: The COVID-19 pandemic highlighted the need for early detection of viral infections in symptomatic and asymptomatic individuals to allow for timely clinical management and public health interventions. METHODS: Twenty healthy adults were challenged with an influenza A (H3N2) virus and prospectively monitored from 7 days before through 10 days after inoculation, using wearable electrocardiogram and physical activity sensors. This framework allowed for responses to be accurately referenced to the infection event. For each participant, we trained a semisupervised multivariable anomaly detection model on data acquired before inoculation and used it to classify the postinoculation dataset. RESULTS: Inoculation with this challenge virus was well-tolerated with an infection rate of 85%. With the model classification threshold set so that no alarms were recorded in the 170 healthy days recorded, the algorithm correctly identified 16 of 17 (94%) positive presymptomatic and asymptomatic individuals, on average 58 hours postinoculation and 23 hours before the symptom onset. CONCLUSIONS: The data processing and modeling methodology show promise for the early detection of respiratory illness. The detection algorithm is compatible with data collected from smartwatches using optical techniques but needs to be validated in large heterogeneous cohorts in normal living conditions. Clinical Trials Registration. NCT04204493.


Subject(s)
COVID-19 , Influenza A virus , Influenza, Human , Wearable Electronic Devices , Adult , Humans , COVID-19/diagnosis , COVID-19/epidemiology , Influenza A Virus, H3N2 Subtype/physiology , Influenza, Human/diagnosis , Pandemics , Prospective Studies
10.
Cell Syst ; 13(12): 989-1001.e8, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36549275

ABSTRACT

The identification of a COVID-19 host response signature in blood can increase the understanding of SARS-CoV-2 pathogenesis and improve diagnostic tools. Applying a multi-objective optimization framework to both massive public and new multi-omics data, we identified a COVID-19 signature regulated at both transcriptional and epigenetic levels. We validated the signature's robustness in multiple independent COVID-19 cohorts. Using public data from 8,630 subjects and 53 conditions, we demonstrated no cross-reactivity with other viral and bacterial infections, COVID-19 comorbidities, or confounders. In contrast, previously reported COVID-19 signatures were associated with significant cross-reactivity. The signature's interpretation, based on cell-type deconvolution and single-cell data analysis, revealed prominent yet complementary roles for plasmablasts and memory T cells. Although the signal from plasmablasts mediated COVID-19 detection, the signal from memory T cells controlled against cross-reactivity with other viral infections. This framework identified a robust, interpretable COVID-19 signature and is broadly applicable in other disease contexts. A record of this paper's transparent peer review process is included in the supplemental information.


Subject(s)
COVID-19 , Virus Diseases , Humans , SARS-CoV-2
11.
Diagnostics (Basel) ; 12(8)2022 Jul 31.
Article in English | MEDLINE | ID: mdl-36010206

ABSTRACT

The Coronavirus Disease 2019 (COVID-19) pandemic forced researchers to reconsider in-person assessments due to transmission risk. We conducted a pilot study to evaluate the feasibility of using the Tasso-SST (Tasso, Inc, Seattle, Washington) device for blood self-collection for use in SARS-CoV-2 antibody testing in an ongoing COVID-19 prevalence and immunity research study. 100 participants were recruited between January and March 2021 from a previously identified sub-cohort of the Cabarrus County COVID-19 Prevalence and Immunity (C3PI) Study who were under-going bimonthly COVID-19 antibody testing. Participants were given a Tasso-SST kit and asked to self-collect blood during a scheduled visit where trained laboratory personnel performed routine phlebotomy. All participants completed an after-visit survey about their experience. Overall, 70.0% of participants were able to collect an adequate sample for testing using the device. Among those with an adequate sample, there was a high concordance in results between the Tasso-SST and phlebotomy blood collection methods (Cohen's kappa coefficient = 0.88, Interclass correlation coefficient 0.98 [0.97, 0.99], p < 0.0001). The device received a high-level (90.0%) of acceptance among all participants. Overall, the Tasso-SST could prove to be a valuable tool for seroprevalence testing. However, future studies in larger, diverse populations over longer periods may provide a better understanding of device usability and acceptance among older participants and those with comorbidities in various use scenarios.

12.
Health Sci Rep ; 5(4): e554, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35899182

ABSTRACT

Purpose: Several cases of symptomatic reinfection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) after full recovery from a prior episode have been reported. As reinfection has become an increasingly common phenomenon, an improved understanding of the risk factors for reinfection and the character and duration of the serological responses to infection and vaccination is critical for managing the coronavirus disease 2019 (COVID-19) pandemic. Methods: We described four cases of SARS-CoV-2 reinfection in individuals representing a spectrum of healthy and immunocompromised states, including (1) a healthy 41-year-old pediatrician, (2) an immunocompromised 31-year-old with granulomatosis with polyangiitis, (3) a healthy 26-year-old pregnant woman, and (4) a 50-year-old with hypertension and hyperlipidemia. We performed confirmatory quantitative reverse transcription-polymerase chain reaction and qualitative immunoglobulin M and quantitative IgG testing on all available patient samples to confirm the presence of infection and serological response to infection. Results: Our analysis showed that patients 1 and 2, a healthy and an immunocompromised patient, both failed to mount a robust serologic response to the initial infection. In contrast, patients 3 and 4, with minimal comorbid disease, both mounted a strong serological response to their initial infection, but were still susceptible to reinfection. Conclusion: Repeat episodes of COVID-19 are capable of occurring in patients regardless of the presence of known risk factors for infection or level of serological response to infection, although this did not trigger critical illness in any instance.

13.
Sci Rep ; 12(1): 11714, 2022 07 09.
Article in English | MEDLINE | ID: mdl-35810186

ABSTRACT

SARS-CoV-2 infection triggers profound and variable immune responses in human hosts. Chromatin remodeling has been observed in individuals severely ill or convalescing with COVID-19, but chromatin remodeling early in disease prior to anti-spike protein IgG seroconversion has not been defined. We performed the Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) and RNA-seq on peripheral blood mononuclear cells (PBMCs) from outpatients with mild or moderate symptom severity at different stages of clinical illness. Early in the disease course prior to IgG seroconversion, modifications in chromatin accessibility associated with mild or moderate symptoms were already robust and included severity-associated changes in accessibility of genes in interleukin signaling, regulation of cell differentiation and cell morphology. Furthermore, single-cell analyses revealed evolution of the chromatin accessibility landscape and transcription factor motif accessibility for individual PBMC cell types over time. The most extensive remodeling occurred in CD14+ monocytes, where sub-populations with distinct chromatin accessibility profiles were observed prior to seroconversion. Mild symptom severity was marked by upregulation of classical antiviral pathways, including those regulating IRF1 and IRF7, whereas in moderate disease, these classical antiviral signals diminished, suggesting dysregulated and less effective responses. Together, these observations offer novel insight into the epigenome of early mild SARS-CoV-2 infection and suggest that detection of chromatin remodeling in early disease may offer promise for a new class of diagnostic tools for COVID-19.


Subject(s)
COVID-19 , Chromatin , Antiviral Agents , COVID-19/genetics , Chromatin/genetics , Humans , Immunoglobulin G/genetics , Leukocytes, Mononuclear , SARS-CoV-2 , Seroconversion , Severity of Illness Index
14.
JAMA Netw Open ; 5(4): e227299, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35420659

ABSTRACT

Importance: Bacterial and viral causes of acute respiratory illness (ARI) are difficult to clinically distinguish, resulting in the inappropriate use of antibacterial therapy. The use of a host gene expression-based test that is able to discriminate bacterial from viral infection in less than 1 hour may improve care and antimicrobial stewardship. Objective: To validate the host response bacterial/viral (HR-B/V) test and assess its ability to accurately differentiate bacterial from viral infection among patients with ARI. Design, Setting, and Participants: This prospective multicenter diagnostic study enrolled 755 children and adults with febrile ARI of 7 or fewer days' duration from 10 US emergency departments. Participants were enrolled from October 3, 2014, to September 1, 2019, followed by additional enrollment of patients with COVID-19 from March 20 to December 3, 2020. Clinical adjudication of enrolled participants identified 616 individuals as having bacterial or viral infection. The primary analysis cohort included 334 participants with high-confidence reference adjudications (based on adjudicator concordance and the presence of an identified pathogen confirmed by microbiological testing). A secondary analysis of the entire cohort of 616 participants included cases with low-confidence reference adjudications (based on adjudicator discordance or the absence of an identified pathogen in microbiological testing). Thirty-three participants with COVID-19 were included post hoc. Interventions: The HR-B/V test quantified the expression of 45 host messenger RNAs in approximately 45 minutes to derive a probability of bacterial infection. Main Outcomes and Measures: Performance characteristics for the HR-B/V test compared with clinical adjudication were reported as either bacterial or viral infection or categorized into 4 likelihood groups (viral very likely [probability score <0.19], viral likely [probability score of 0.19-0.40], bacterial likely [probability score of 0.41-0.73], and bacterial very likely [probability score >0.73]) and compared with procalcitonin measurement. Results: Among 755 enrolled participants, the median age was 26 years (IQR, 16-52 years); 360 participants (47.7%) were female, and 395 (52.3%) were male. A total of 13 participants (1.7%) were American Indian, 13 (1.7%) were Asian, 368 (48.7%) were Black, 131 (17.4%) were Hispanic, 3 (0.4%) were Native Hawaiian or Pacific Islander, 297 (39.3%) were White, and 60 (7.9%) were of unspecified race and/or ethnicity. In the primary analysis involving 334 participants, the HR-B/V test had sensitivity of 89.8% (95% CI, 77.8%-96.2%), specificity of 82.1% (95% CI, 77.4%-86.6%), and a negative predictive value (NPV) of 97.9% (95% CI, 95.3%-99.1%) for bacterial infection. In comparison, the sensitivity of procalcitonin measurement was 28.6% (95% CI, 16.2%-40.9%; P < .001), the specificity was 87.0% (95% CI, 82.7%-90.7%; P = .006), and the NPV was 87.6% (95% CI, 85.5%-89.5%; P < .001). When stratified into likelihood groups, the HR-B/V test had an NPV of 98.9% (95% CI, 96.1%-100%) for bacterial infection in the viral very likely group and a positive predictive value of 63.4% (95% CI, 47.2%-77.9%) for bacterial infection in the bacterial very likely group. The HR-B/V test correctly identified 30 of 33 participants (90.9%) with acute COVID-19 as having a viral infection. Conclusions and Relevance: In this study, the HR-B/V test accurately discriminated bacterial from viral infection among patients with febrile ARI and was superior to procalcitonin measurement. The findings suggest that an accurate point-of-need host response test with high NPV may offer an opportunity to improve antibiotic stewardship and patient outcomes.


Subject(s)
Bacterial Infections , COVID-19 , Virus Diseases , Adult , Bacteria , Bacterial Infections/drug therapy , COVID-19/diagnosis , Child , Female , Fever/diagnosis , Gene Expression , Humans , Male , Procalcitonin , Virus Diseases/diagnosis
15.
Res Sq ; 2022 Apr 07.
Article in English | MEDLINE | ID: mdl-35411343

ABSTRACT

SARS-CoV-2 infection triggers profound and variable immune responses in human hosts. Chromatin remodeling has been observed in individuals severely ill or convalescing with COVID-19, but chromatin remodeling early in disease prior to anti-spike protein IgG seroconversion has not been defined. We performed the Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) and RNA-seq on peripheral blood mononuclear cells (PBMCs) from outpatients with mild or moderate symptom severity at different stages of clinical illness. Early in the disease course prior to IgG seroconversion, modifications in chromatin accessibility associate with mild or moderate symptoms are already robust and include severity-associated changes in accessibility of genes in interleukin signaling, regulation of cell differentiation and cell morphology. Furthermore, single-cell analyses revealed evolution of the chromatin accessibility landscape and transcription factor motif accessibility for individual PBMC cell types over time. The most extensive remodeling occurred in CD14+ monocytes, where sub-populations with distinct chromatin accessibility profiles were observed prior to seroconversion. Mild symptom severity is marked by upregulation classical antiviral pathways including those regulating IRF1 and IRF7, whereas in moderate disease these classical antiviral signals diminish suggesting dysregulated and less effective responses. Together, these observations offer novel insight into the epigenome of early mild SARS-CoV-2 infection and suggest that detection of chromatin remodeling in early disease may offer promise for a new class of diagnostic tools for COVID-19.

16.
Clin Infect Dis ; 74(9): 1525-1533, 2022 05 03.
Article in English | MEDLINE | ID: mdl-34374761

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral RNA (vRNA) is detected in the bloodstream of some patients with coronavirus disease 2019 (COVID-19), but it is not clear whether this RNAemia reflects viremia (ie, virus particles) and how it relates to host immune responses and outcomes. METHODS: SARS-CoV-2 vRNA was quantified in plasma samples from observational cohorts of 51 COVID-19 patients including 9 outpatients, 19 hospitalized (non-intensive care unit [ICU]), and 23 ICU patients. vRNA levels were compared with cross-sectional indices of COVID-19 severity and prospective clinical outcomes. We used multiple imaging methods to visualize virions in plasma. RESULTS: SARS-CoV-2 vRNA was detected in plasma of 100%, 52.6%, and 11.1% of ICU, non-ICU, and outpatients, respectively. Virions were detected in plasma pellets using electron tomography and immunostaining. Plasma vRNA levels were significantly higher in ICU > non-ICU > outpatients (P < .0001); for inpatients, plasma vRNA levels were strongly associated with higher World Health Organization (WHO) score at admission (P = .01), maximum WHO score (P = .002), and discharge disposition (P = .004). A plasma vRNA level >6000 copies/mL was strongly associated with mortality (hazard ratio, 10.7). Levels of vRNA were significantly associated with several inflammatory biomarkers (P < .01) but not with plasma neutralizing antibody titers (P = .8). CONCLUSIONS: Visualization of virus particles in plasma indicates that SARS-CoV-2 RNAemia is due, at least in part, to viremia. The levels of SARS-CoV-2 RNAemia correlate strongly with disease severity, patient outcome, and specific inflammatory biomarkers but not with neutralizing antibody titers.


Subject(s)
COVID-19 , Antibodies, Neutralizing , Biomarkers , COVID-19/diagnosis , Cross-Sectional Studies , Humans , Prospective Studies , RNA, Viral , SARS-CoV-2 , Viremia
17.
JCI Insight ; 6(17)2021 09 08.
Article in English | MEDLINE | ID: mdl-34228642

ABSTRACT

As SARS-CoV-2 continues to spread globally, questions have emerged regarding the strength and durability of immune responses in specific populations. In this study, we evaluated humoral immune responses in 69 children and adolescents with asymptomatic or mild symptomatic SARS-CoV-2 infection. We detected robust IgM, IgG, and IgA antibody responses to a broad array of SARS-CoV-2 antigens at the time of acute infection and 2 and 4 months after acute infection in all participants. Notably, these antibody responses were associated with virus-neutralizing activity that was still detectable 4 months after acute infection in 94% of children. Moreover, antibody responses and neutralizing activity in sera from children and adolescents were comparable or superior to those observed in sera from 24 adults with mild symptomatic infection. Taken together, these findings indicate that children and adolescents with mild or asymptomatic SARS-CoV-2 infection generate robust and durable humoral immune responses that can likely contribute to protection from reinfection.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/immunology , Adolescent , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Asymptomatic Diseases , COVID-19/blood , COVID-19/pathology , Child , Female , Humans , Male , SARS-CoV-2/immunology
18.
Cell ; 184(16): 4203-4219.e32, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34242577

ABSTRACT

SARS-CoV-2-neutralizing antibodies (NAbs) protect against COVID-19. A concern regarding SARS-CoV-2 antibodies is whether they mediate disease enhancement. Here, we isolated NAbs against the receptor-binding domain (RBD) or the N-terminal domain (NTD) of SARS-CoV-2 spike from individuals with acute or convalescent SARS-CoV-2 or a history of SARS-CoV infection. Cryo-electron microscopy of RBD and NTD antibodies demonstrated function-specific modes of binding. Select RBD NAbs also demonstrated Fc receptor-γ (FcγR)-mediated enhancement of virus infection in vitro, while five non-neutralizing NTD antibodies mediated FcγR-independent in vitro infection enhancement. However, both types of infection-enhancing antibodies protected from SARS-CoV-2 replication in monkeys and mice. Three of 46 monkeys infused with enhancing antibodies had higher lung inflammation scores compared to controls. One monkey had alveolar edema and elevated bronchoalveolar lavage inflammatory cytokines. Thus, while in vitro antibody-enhanced infection does not necessarily herald enhanced infection in vivo, increased lung inflammation can rarely occur in SARS-CoV-2 antibody-infused macaques.


Subject(s)
Antibodies, Neutralizing/immunology , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Viral/immunology , Bronchoalveolar Lavage Fluid/chemistry , COVID-19/pathology , COVID-19/virology , Cytokines/metabolism , Female , Haplorhini , Humans , Lung/pathology , Lung/virology , Male , Mice , Mice, Inbred BALB C , Protein Domains , RNA, Guide, Kinetoplastida/metabolism , Receptors, IgG/metabolism , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/chemistry , Viral Load , Virus Replication
19.
Nature ; 594(7864): 553-559, 2021 06.
Article in English | MEDLINE | ID: mdl-33971664

ABSTRACT

Betacoronaviruses caused the outbreaks of severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome, as well as the current pandemic of SARS coronavirus 2 (SARS-CoV-2)1-4. Vaccines that elicit protective immunity against SARS-CoV-2 and betacoronaviruses that circulate in animals have the potential to prevent future pandemics. Here we show that the immunization of macaques with nanoparticles conjugated with the receptor-binding domain of SARS-CoV-2, and adjuvanted with 3M-052 and alum, elicits cross-neutralizing antibody responses against bat coronaviruses, SARS-CoV and SARS-CoV-2 (including the B.1.1.7, P.1 and B.1.351 variants). Vaccination of macaques with these nanoparticles resulted in a 50% inhibitory reciprocal serum dilution (ID50) neutralization titre of 47,216 (geometric mean) for SARS-CoV-2, as well as in protection against SARS-CoV-2 in the upper and lower respiratory tracts. Nucleoside-modified mRNAs that encode a stabilized transmembrane spike or monomeric receptor-binding domain also induced cross-neutralizing antibody responses against SARS-CoV and bat coronaviruses, albeit at lower titres than achieved with the nanoparticles. These results demonstrate that current mRNA-based vaccines may provide some protection from future outbreaks of zoonotic betacoronaviruses, and provide a multimeric protein platform for the further development of vaccines against multiple (or all) betacoronaviruses.


Subject(s)
Antibodies, Neutralizing/immunology , Betacoronavirus/immunology , COVID-19/immunology , COVID-19/prevention & control , Common Cold/prevention & control , Cross Reactions/immunology , Pandemics , Viral Vaccines/immunology , Adjuvants, Immunologic , Administration, Intranasal , Animals , COVID-19/epidemiology , COVID-19 Vaccines/immunology , Common Cold/immunology , Common Cold/virology , Disease Models, Animal , Female , Humans , Macaca/immunology , Male , Models, Molecular , Nanoparticles/chemistry , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Trachea , Vaccination
20.
Crit Care Med ; 49(10): 1651-1663, 2021 10 01.
Article in English | MEDLINE | ID: mdl-33938716

ABSTRACT

OBJECTIVES: Host gene expression signatures discriminate bacterial and viral infection but have not been translated to a clinical test platform. This study enrolled an independent cohort of patients to describe and validate a first-in-class host response bacterial/viral test. DESIGN: Subjects were recruited from 2006 to 2016. Enrollment blood samples were collected in an RNA preservative and banked for later testing. The reference standard was an expert panel clinical adjudication, which was blinded to gene expression and procalcitonin results. SETTING: Four U.S. emergency departments. PATIENTS: Six-hundred twenty-three subjects with acute respiratory illness or suspected sepsis. INTERVENTIONS: Forty-five-transcript signature measured on the BioFire FilmArray System (BioFire Diagnostics, Salt Lake City, UT) in ~45 minutes. MEASUREMENTS AND MAIN RESULTS: Host response bacterial/viral test performance characteristics were evaluated in 623 participants (mean age 46 yr; 45% male) with bacterial infection, viral infection, coinfection, or noninfectious illness. Performance of the host response bacterial/viral test was compared with procalcitonin. The test provided independent probabilities of bacterial and viral infection in ~45 minutes. In the 213-subject training cohort, the host response bacterial/viral test had an area under the curve for bacterial infection of 0.90 (95% CI, 0.84-0.94) and 0.92 (95% CI, 0.87-0.95) for viral infection. Independent validation in 209 subjects revealed similar performance with an area under the curve of 0.85 (95% CI, 0.78-0.90) for bacterial infection and 0.91 (95% CI, 0.85-0.94) for viral infection. The test had 80.1% (95% CI, 73.7-85.4%) average weighted accuracy for bacterial infection and 86.8% (95% CI, 81.8-90.8%) for viral infection in this validation cohort. This was significantly better than 68.7% (95% CI, 62.4-75.4%) observed for procalcitonin (p < 0.001). An additional cohort of 201 subjects with indeterminate phenotypes (coinfection or microbiology-negative infections) revealed similar performance. CONCLUSIONS: The host response bacterial/viral measured using the BioFire System rapidly and accurately discriminated bacterial and viral infection better than procalcitonin, which can help support more appropriate antibiotic use.


Subject(s)
Bacterial Infections/diagnosis , Clinical Laboratory Techniques/standards , Transcriptome , Virus Diseases/diagnosis , Adult , Bacterial Infections/genetics , Biomarkers/analysis , Biomarkers/blood , Clinical Laboratory Techniques/methods , Clinical Laboratory Techniques/statistics & numerical data , Emergency Service, Hospital/organization & administration , Emergency Service, Hospital/statistics & numerical data , Female , Humans , Male , Middle Aged , Virus Diseases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...