Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Dis ; 106(3): 835-845, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34546772

ABSTRACT

Little cherry virus 2 (LChV-2, genus Ampelovirus) is considered to be the main causal agent of the economically damaging little cherry disease, which can only be controlled by removal of infected trees. The widespread viral disease of sweet cherry (Prunus avium L.) is affecting the survival of long-standing orchards in North America and Europe, hence the dire need for an early and accurate diagnosis to establish a sound disease control strategy. The endemic presence of LChV-2 is mainly confirmed using laborious time-consuming reverse-transcription (RT-PCR). A rapid reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay targeting a conserved region of the coat protein was developed and compared with conventional RT-PCR for the specific detection of LChV-2. This affordable assay, combined with a simple RNA extraction, deploys desirable characteristics such as higher ability for faster (<15 min), more analytically sensitive (100-fold), and robust broad-range diagnosis of LChV-2 isolates from sweet cherry, ornamental flowering cherry displaying heterogenous viral etiology and, for the first time, newly identified potential insect vectors. Moreover, use of Sanger and total RNA high-throughput sequencing as complementary metaviromics approaches confirmed the LChV-2 RT-LAMP detection of divergent LChV-2 isolates in new hosts and the relationship of their whole-genome was exhaustively inferred using maximum-likelihood phylogenomics. This entails unprecedented critical understanding of a novel evolutionary clade further expanding LChV-2 viral diversity. In conclusion, this highly effective diagnostic platform facilitates strategical support for early in-field testing to reliably prevent dissemination of new LChV-2 outbreaks from propagative plant stocks or newly postulated insect vectors. Validated results and major advantages are herein thoroughly discussed, in light of the knowledge required to increase the potential accuracy of future diagnostics and the essential epidemiological considerations to proactively safeguard cherries and Prunus horticultural crop systems from little cherry disease.


Subject(s)
Closteroviridae , RNA, Viral , High-Throughput Nucleotide Sequencing , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , Phylogeny , Plant Diseases , RNA, Viral/genetics
2.
Viruses ; 11(7)2019 06 29.
Article in English | MEDLINE | ID: mdl-31261922

ABSTRACT

Little cherry disease, caused by little cherry virus 1 (LChV-1) and little cherry virus 2 (LChV-2), which are both members of the family Closteroviridae, severely affects sweet (Prunus avium L.) and sour cherry (P. cerasus L.) orchards lifelong production worldwide. An intensive survey was conducted across different geographic regions of Belgium to study the disease presence on these perennial woody plants and related species. Symptomatic as well as non-symptomatic Prunus spp. trees tested positive via RT-PCR for LChV-1 and -2 in single or mixed infections, with a slightly higher incidence for LChV-1. Both viruses were widespread and highly prevalent in nearly all Prunus production areas as well as in private gardens and urban lane trees. The genetic diversity of Belgian LChV-1 and -2 isolates was assessed by Sanger sequencing of partial genomic regions. A total RNA High-Throughput Sequencing (HTS) approach confirmed the presence of both viruses, and revealed the occurrence of other Prunus-associated viruses, namely cherry virus A (CVA), prune dwarf virus (PDV) and prunus virus F (PrVF). The phylogenetic inference from full-length genomes revealed well-defined evolutionary phylogroups with high genetic variability and diversity for LChV-1 and LChV-2 Belgian isolates, yet with little or no correlation with planting area or cultivated varieties. The global diversity and the prevalence in horticultural areas of LChV-1 and -2 variants, in association with other recently described fruit tree viruses, are of particular concern. Future epidemiological implications as well as new investigation avenues are exhaustively discussed.


Subject(s)
Closteroviridae/genetics , Genome, Viral , Plant Diseases/virology , Belgium/epidemiology , Closteroviridae/classification , Closteroviridae/isolation & purification , Genetic Variation , High-Throughput Nucleotide Sequencing , Phylogeny , Plant Diseases/statistics & numerical data , Prunus/virology
3.
J Virol Methods ; 265: 91-98, 2019 03.
Article in English | MEDLINE | ID: mdl-30593838

ABSTRACT

Little cherry virus 1 (LChV-1) belongs to the genus Velarivirus, family Closteroviridae, is an economically important pathogen affecting mainly cherry around the world emphasizing the impetus for its efficient and accurate on-site detection. This study describes the development of a reliable diagnostic protocol of LChV-1 based on a one-step reverse-transcription loop-mediated isothermal amplification (RT-LAMP). The protocol detects LChV-1 isolates in less than 10 min by fluorescence monitoring using a mobile detection device and is most optimal when performed at 67 °C. Sharp melting curves and unique melting temperatures (Tm) were obtained for the positive samples. Both the RT-LAMP and classical RT-PCR methods are capable of specifically detecting LChV-1 in infected leaf tissues. In addition, the RT-LAMP has remarkable advantages in comparison to RT-PCR. It is at least hundred fold more sensitive, significantly faster (allowing on-field leaf-to-result diagnostic) and efficient at minimal cost. In conclusion, this innovative RT-LAMP approach can contribute to the implementation of sustainable integrated management strategies for detection of LChV-1 in commercial orchards or for horticultural research stations. It is also suitable for decision support in phytosanitary epidemiological programs.


Subject(s)
Closteroviridae/isolation & purification , Nucleic Acid Amplification Techniques/methods , Plant Diseases/virology , Prunus avium/virology , Closteroviridae/genetics , Costs and Cost Analysis , Fluorometry/instrumentation , Fluorometry/methods , Plant Leaves/virology , Sensitivity and Specificity , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...