Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Sci Rep ; 13(1): 10414, 2023 07 20.
Article in English | MEDLINE | ID: mdl-37474571

ABSTRACT

Crowd movements are observed among different species and on different scales, from insects to mammals, as well as in non-cognitive systems, such as motile cells. When forced to escape through a narrow opening, most terrestrial animals behave like granular materials and clogging events decrease the efficiency of the evacuation. Here, we explore the evacuation behavior of macroscopic, aquatic agents, neon fish, and challenge their gregarious behavior by forcing the school through a constricted passage. Using a statistical analysis method developed for granular matter and applied to crowd evacuation, our results clearly show that, unlike crowds of people or herds of sheep, no clogging occurs at the bottleneck. The fish do not collide and wait for a minimum waiting time between two successive exits, while respecting a social distance. When the constriction becomes similar to or smaller than their social distance, the individual domains defined by this cognitive distance are deformed and fish density increases. We show that the current of escaping fish behaves like a set of deformable 2D-bubbles, their 2D domain, passing through a constriction. Schools of fish show that, by respecting social rules, a crowd of individuals can evacuate without clogging, even in an emergency situation.


Subject(s)
Crowding , Movement , Animals , Sheep , Physical Distancing , Mammals
2.
Phys Rev E ; 103(2-1): 022137, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33736021

ABSTRACT

We study the orientational order of an immobile fish school. Starting from the second Newton law, we show that the inertial dynamics of orientations is ruled by an Ornstein-Uhlenbeck process. This process describes the dynamics of alignment between neighboring fish in a shoal-a dynamics already used in the literature for mobile fish schools. First, in a fluid at rest, we calculate the global polarization (i.e., the mean orientation of the fish), which decreases rapidly as a function of noise. We show that the faster a fish is able to reorient itself the more the school can afford to reorder itself for important noise values. Second, in the presence of a stream, each fish tends to orient itself and swims against the flow: so-called rheotaxis. So, even in the presence of a flow, it results in an immobile fish school. By adding an individual rheotaxis effect to alignment interaction between fish, we show that in a noisy environment individual rheotaxis is enhanced by alignment interactions between fish.


Subject(s)
Fishes/physiology , Movement , Animals , Swimming
3.
Phys Rev Lett ; 122(14): 148101, 2019 Apr 12.
Article in English | MEDLINE | ID: mdl-31050451

ABSTRACT

We present a statistical analysis of the experimental trajectories of colloids in a dilute suspension of the green algae Chlamydomonas reinhardtii. The measured probability density function (pdf) of the displacements of colloids covers 7 orders of magnitude. The pdfs are characterized by non-Gaussian tails for intermediate time intervals, but nevertheless they collapse when scaled with their standard deviation. This diffusive scaling breaks down for longer time intervals and the pdf becomes Gaussian. However, the mean squared displacements of tracer positions are linear over the complete measurement time interval. Experiments are performed for various tracer diameters, swimmer concentrations, and mean swimmer velocities. This allows a rigorous comparison with several theoretical models. We can exclude a description based on an effective temperature and other mean field approaches that describe the irregular motion as a sum of the fluctuating far field of many microswimmers. The data are best described by the microscopic model by J.-L. Thiffeault, Distribution of particle displacements due to swimming microorganisms, Phys. Rev. E 92, 023023 (2015)PRESCM1539-375510.1103/PhysRevE.92.023023.

4.
J Chem Phys ; 150(10): 104901, 2019 Mar 14.
Article in English | MEDLINE | ID: mdl-30876342

ABSTRACT

The microalga Chlamydomonas Reinhardtii is used here as a model system to study the effect of complex environments on the swimming of micro-organisms. Its motion can be modeled by a run and tumble mechanism so that it describes a persistent random walk from which we can extract an effective diffusion coefficient for the large-time dynamics. In our experiments, the complex medium consists of a series of pillars that are designed in a regular lattice using soft lithography microfabrication. The cells are then introduced in the lattice, and their trajectories within the pillars are tracked and analyzed. The effect of the complex medium on the swimming behavior of microswimmers is analyzed through the measure of relevant statistical observables. In particular, the mean correlation time of direction and the effective diffusion coefficient are shown to decrease when increasing the density of pillars. This provides some basis of understanding for active matter in complex environments.

5.
Phys Rev E ; 96(5-1): 052610, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29347779

ABSTRACT

Micro-organisms usually can swim in their liquid environment by flagellar or ciliary beating. In this numerical work, we analyze the influence of flagellar beating on the orbits of a swimming cell in a shear flow. We also calculate the effect of the flagellar beating on the rheology of a dilute suspension of microswimmers. A three-dimensional model is proposed for Chlamydomonas Reinhardtii swimming with a breaststroke-like beating of two anterior flagella modeled by two counter-rotating fore beads. The active swimmer model reveals unusual angular orbits in a linear shear flow. Namely, the swimmer sustains orientations transiently across the flow. Such behavior is a result of the interplay between shear flow and the swimmer's periodic beating motion of flagella, which exert internal torques on the cell body. This peculiar behavior has some significant consequences on the rheological properties of the suspension. We calculate Einstein's viscosity of the suspension composed of such isolated modeled microswimmers (dilute case) in a shear flow. We use numerical simulations based on a Rotne-Prager-like approximation for hydrodynamic interaction between simplified flagella and the cell body. The results show an increased intrinsic viscosity for active swimmer suspensions in comparison to nonactive ones as well as a shear thinning behavior in accordance with previous experimental measurements [Phys. Rev. Lett. 104, 098102 (2010)10.1103/PhysRevLett.104.098102].


Subject(s)
Flagella/physiology , Models, Biological , Chlamydomonas reinhardtii/physiology , Computer Simulation , Movement , Periodicity , Rheology , Suspensions , Torque , Viscosity
6.
Soft Matter ; 12(36): 7470-84, 2016 Sep 28.
Article in English | MEDLINE | ID: mdl-27546154

ABSTRACT

Several micro-organisms, such as bacteria, algae, or spermatozoa, use flagellar or ciliary activity to swim in a fluid, while many other micro-organisms instead use ample shape deformation, described as amoeboid, to propel themselves either by crawling on a substrate or swimming. Many eukaryotic cells were believed to require an underlying substratum to migrate (crawl) by using membrane deformation (like blebbing or generation of lamellipodia) but there is now increasing evidence that a large variety of cells (including those of the immune system) can migrate without the assistance of focal adhesion, allowing them to swim as efficiently as they can crawl. This paper details the analysis of amoeboid swimming in a confined fluid by modeling the swimmer as an inextensible membrane deploying local active forces (with zero total force and torque). The swimmer displays a rich behavior: it may settle into a straight trajectory in the channel or navigate from one wall to the other depending on its confinement. The nature of the swimmer is also found to be affected by confinement: the swimmer can behave, on average over one swimming cycle, as a pusher at low confinement, and becomes a puller at higher confinement, or vice versa. The swimmer's nature is thus not an intrinsic property. The scaling of the swimmer velocity V with the force amplitude A is analyzed in detail showing that at small enough A, V∼A(2)/η(2) (where η is the viscosity of the ambient fluid), whereas at large enough A, V is independent of the force and is determined solely by the stroke cycle frequency and the swimmer size. This finding starkly contrasts with models where motion is based on ciliary and flagellar activity, where V∼A/η. To conclude, two definitions of efficiency as put forward in the literature are analyzed with distinct outcomes. We find that one type of efficiency has an optimum as a function of confinement while the other does not. Future perspectives are outlined.


Subject(s)
Cell Movement/physiology , Eukaryotic Cells/cytology , Models, Biological , Motion , Biomechanical Phenomena , Cilia/physiology , Flagella/physiology
7.
Phys Rev E ; 93(5): 051101, 2016 05.
Article in English | MEDLINE | ID: mdl-27300822

ABSTRACT

We explore in this paper the phenomenon of photofocusing: a coupling between flow vorticity and biased swimming of microalgae toward a light source that produces a focusing of the microswimmer suspension. We combine experiments that investigate the stationary state of this phenomenon as well as the transition regime with analytical and numerical modeling. We show that the experimentally observed scalings on the width of the focalized region and the establishment length as a function of the flow velocity are well described by a simple theoretical model.

8.
Article in English | MEDLINE | ID: mdl-25615199

ABSTRACT

Three-dimensional (3D) numerical simulations are performed on suspensions composed of puller-like microswimmers that are sensitive to light (phototaxis) mimicking microalgae in a Poiseuille flow. Simulations are based on the numerical resolution of the flow equations at low Reynolds numbers discretized on a 3D grid (finite differences). The model reproduces the formation of a central jet of swimmers by self-focusing [Phys. Rev. Lett. 110, 138106 (2013)] but also predicts an instability of the jet, which leads to its fractionation in clusters. We show that this instability is due to hydrodynamic interactions between microswimmers, which attract each other along the flow direction. This effect was not observed in the experiments conducted on dilute suspensions (i.e., where hydrodynamic interactions are weak). This phenomenon is peculiar for pullers for which collective motions are usually not observed on such a time scale. With this modeling, we hope to pave the way toward a better understanding of concentration techniques of algae (a bottleneck challenge in industrial applications).

9.
Phys Rev Lett ; 111(22): 228102, 2013 Nov 27.
Article in English | MEDLINE | ID: mdl-24329472

ABSTRACT

Microorganisms, such as bacteria, algae, or spermatozoa, are able to propel themselves forward thanks to flagella or cilia activity. By contrast, other organisms employ pronounced changes of the membrane shape to achieve propulsion, a prototypical example being the Eutreptiella gymnastica. Cells of the immune system as well as dictyostelium amoebas, traditionally believed to crawl on a substratum, can also swim in a similar way. We develop a model for these organisms: the swimmer is mimicked by a closed incompressible membrane with force density distribution (with zero total force and torque). It is shown that fast propulsion can be achieved with adequate shape adaptations. This swimming is found to consist of an entangled pusher-puller state. The autopropulsion distance over one cycle is a universal linear function of a simple geometrical dimensionless quantity A/V(2/3) (V and A are the cell volume and its membrane area). This study captures the peculiar motion of Eutreptiella gymnastica with simple force distribution.


Subject(s)
Cell Surface Extensions/physiology , Euglenida/physiology , Models, Biological , Swimming/physiology
10.
Article in English | MEDLINE | ID: mdl-23679463

ABSTRACT

Cross-linked semiflexible polymer networks are omnipresent in living cells. Typical examples are actin networks in the cytoplasm of eukaryotic cells, which play an essential role in cell motility, and the spectrin network, a key element in maintaining the integrity of erythrocytes in the blood circulatory system. We introduce a simple mechanical network model at the length scale of the typical mesh size and derive a continuous constitutive law relating the stress to deformation. The continuous constitutive law is found to be generically nonlinear even if the microscopic law at the scale of the mesh size is linear. The nonlinear bulk mechanical properties are in good agreement with the experimental data for semiflexible polymer networks, i.e., the network stiffens and exhibits a negative normal stress in response to a volume-conserving shear deformation, whereby the normal stress is of the same order as the shear stress. Furthermore, it shows a strain localization behavior in response to an uniaxial compression. Within the same model we find a hierarchy of constitutive laws depending on the degree of nonlinearities retained in the final equation. The presented theory provides a basis for the continuum description of polymer networks such as actin or spectrin in complex geometries and it can be easily coupled to growth problems, as they occur, for example, in modeling actin-driven motility.


Subject(s)
Elasticity , Nonlinear Dynamics , Polymers/chemistry , Stress, Mechanical
11.
Phys Rev Lett ; 110(13): 138106, 2013 Mar 29.
Article in English | MEDLINE | ID: mdl-23581381

ABSTRACT

Some microalgae are sensitive to light intensity gradients. This property is known as phototaxis: The algae swim toward a light source (positive phototaxis). We use this property to control the motion of microalgae within a Poiseuille flow using light. The combination of flow vorticity and phototaxis results in a concentration of algae around the center of the flow. Intermittent light exposure allows analysis of the dynamics of this phenomenon and its reversibility. With this phenomenon, we hope to pave the way toward new algae concentration techniques (a bottleneck challenge in biofuel algal production) and toward the improvement of pollutant biodetector technology.


Subject(s)
Chlamydomonas reinhardtii/physiology , Light , Models, Biological , Movement/physiology , Swimming/physiology , Nonlinear Dynamics
12.
Langmuir ; 28(38): 13758-64, 2012 Sep 25.
Article in English | MEDLINE | ID: mdl-22935030

ABSTRACT

We report on the design of microchannels made of glass capillary coated with polymer brushes elaborated by the so-called "grafting-from" technique. We present measurements of velocity profiles for pressure-driven flows of water in such "hairy" capillaries. We show that the flow reduction induced by the presence of the brush is unexpectedly greater than what could be anticipated from simple geometric arguments on the reduction of the effective capillary diameter or from predictions by models describing the brush layer as a poro-elastic boundary.


Subject(s)
Microfluidic Analytical Techniques , Polymers/chemistry , Glass/chemistry , Microfluidic Analytical Techniques/instrumentation , Pressure , Water/chemistry
13.
Phys Rev E Stat Nonlin Soft Matter Phys ; 83(3 Pt 2): 035301, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21517551

ABSTRACT

Swimming at a micrometer scale demands particular strategies. When inertia is negligible compared to viscous forces, hydrodynamics equations are reversible in time. To achieve propulsion, microswimmers must therefore deform in a way that is not invariant under time reversal. Here, we investigate dispersal properties of the microalga Chlamydomonas reinhardtii by means of microscopy and cell tracking. We show that tracked trajectories are well modeled by a correlated random walk. This process is based on short time correlations in the direction of movement called persistence. At longer times, correlation is lost and a standard random walk characterizes the trajectories. Moreover, high-speed imaging enables us to show how the back-and-forth motion of flagella at very short times affects the statistical description of the dynamics. Finally, we show how drag forces modify the characteristics of this particular random walk.


Subject(s)
Cell Movement , Chlamydomonas reinhardtii/cytology , Hydrodynamics , Probability , Stochastic Processes , Time Factors , Viscosity
14.
Phys Rev Lett ; 104(9): 098102, 2010 Mar 05.
Article in English | MEDLINE | ID: mdl-20367014

ABSTRACT

The measurement of a quantitative and macroscopic parameter to estimate the global motility of a large population of swimming biological cells is a challenge. Experiments on the rheology of active suspensions have been performed. Effective viscosity of sheared suspensions of live unicellular motile microalgae (Chlamydomonas Reinhardtii) is far greater than for suspensions containing the same volume fraction of dead cells. In addition, suspensions show shear thinning behavior. We relate these macroscopic measurements to the orientation of individual swimming cells under flow and discuss our results in the light of several existing models.


Subject(s)
Chlamydomonas reinhardtii/physiology , Algorithms , Models, Biological , Motion , Movement , Rheology , Suspensions , Time Factors , Viscosity
15.
Phys Rev Lett ; 100(6): 068101, 2008 Feb 15.
Article in English | MEDLINE | ID: mdl-18352520

ABSTRACT

Force generation by actin polymerization is an important step in cellular motility and can induce the motion of organelles or bacteria, which move inside their host cells by trailing an actin tail behind. Biomimetic experiments on beads and droplets have identified the biochemical ingredients to induce this motion, which requires a spontaneous symmetry breaking in the absence of external fields. We find that the symmetry breaking can be captured on the basis of elasticity theory and linear flux-force relationships. Furthermore, we develop a phase-field approach to study the fully nonlinear regime and show that actin-comet formation is a robust feature, triggered by growth and mechanical stresses. We discuss the implications of symmetry breaking for self-propulsion.


Subject(s)
Actins/chemistry , Actins/physiology , Biomimetic Materials/chemistry , Cell Movement/physiology , Models, Chemical , Elasticity , Models, Biological , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...