Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Langmuir ; 40(23): 12148-12158, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38806445

ABSTRACT

During the past decade, ever-increasing electromagnetic pollution has excited a global concern. A sustainable resource, facile experimental scenario, fascinating reflection loss (RL), and broad efficient bandwidth are the substantial factors that intrigue researchers. This research led to the achievement of a brilliant microwave-absorbing material by treating pampas as biomass. The carbon-based microfibers attained by biowaste were treated by plasma under diverse environments to amplify their microwave-absorbing features. Moreover, a pyrolysis scenario was performed to compare the results. The reductive processes were performed by H2 plasma and carbonization. However, the CO2 plasma was performed to regulate the heteroatoms and defects. Interestingly, polystyrene (PS) was applied as a microwave-absorbing matrix. The aromatic rings existing in the absorbing medium establish electrostatic interactions, elevating interfacial polarization, and physical characteristics of PS augment the practical applications of the final product. The manipulated biomasses were characterized by Raman, X-ray diffraction, energy-dispersive spectroscopy, field emission scanning electron microscopy, and diffuse reflection spectroscopy analyses. Eventually, the microwave-absorbing features were estimated by a vector network analyzer. The plasma-treated pampas under H2/Ar blended with PS gained a maximum RL of -90.65 dB at 8.79 GHz and an efficient bandwidth (RL ≤ -10 dB) of 4.24 GHz with a thickness of 3.20 mm; meanwhile, plasma treatment under CO2 led to a maximum RL of 97.99 dB at 14.92 GHz and an efficient bandwidth of 7.74 GHz with a 2.05 mm thickness. Particularly, the biomass plasmolyzed under Ar covered the entire X and Ku bands with a thickness of 2.10 mm. Notably, total shielding efficiencies of the treated bioinspired materials were up to ≈99%, desirable for practical applications.

2.
Dalton Trans ; 53(9): 4222-4236, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38332744

ABSTRACT

Electromagnetic pollution and cancer are phenomena that essentially endanger the future of humanity. Herein, multiple approaches are being proposed to solve the aforementioned issues. Recent studies have demonstrated that by regulating the morphology, defect, and phase of materials, their microwave absorbing, optical, and hyperthermia properties are tunable. Calcium ferrite with proper dielectric, magnetic, and biocompatible characteristics was chosen as a substantial candidate to promote its microwave-absorbing properties by regulating its structure. Spinel CaFe2O4 was synthesized through sol-gel and solvothermal routes and its phase, defect, and morphology were manipulated using innovative procedures. Glucose was applied as conventional defecting and templating agent; interestingly, a dendrimer was designed to bear and form nanoparticles. More importantly, a novel reductive process was designed to fabricate one-put Ca/Fe3O4 using a solvothermal method. Particularly, polypropylene (PP) was employed as a practical polymeric matrix to fabricate the eventual product. Structures were molded at a low filling ratio to evaluate their optical and microwave-absorbing performance. As expected, defects, morphology, and phase play a pivotal role in tuning the optical and microwave-absorbing properties of calcium ferrite derivates. Interestingly, the dendrimer-assisted (D-A) formation of CaFe2O4 demonstrated a fascinating reflection loss (RL) of 70.11 dB and an efficient bandwidth (RL ≤ -20 dB) of 7.03 GHz with ultralow thickness (0.65 mm) and filling ratio (10 wt%), attaining proper shielding efficiency (SE) and hyperthermia desirable for its practical application as a material for shielding buildings and cancer therapy. The presented perspective develops new inspirations for architecting microwave absorbing/shielding materials with advanced applications in therapeutic issues.

3.
RSC Adv ; 13(32): 22205-22215, 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37492511

ABSTRACT

Microwave absorbing architectures have gained a great deal of attention due to their widespread application in diverse fields, especially in refining electromagnetic pollution. The aim of this study is to investigate the metamaterial characteristics of porphyrin derivatives as conjugated rings in the microwave region and evaluate the influence of electron-withdrawing and donating groups on microwave attenuating performance. Initially, an innovative microwave curing procedure was applied to synthesize the derivates; following that, the phenyl, aniline, and nitrophenyl-coupled structures were identified by XRD, FTIR, FESEM, and DRS analyses. The optical features illustrated that the characteristic band gap of the conjugated loops is obtained and that the optical performance can be manipulated by coupling the functional groups. Eventually, the achieved results demonstrated that the best microwave absorbing performance is related to aniline-coupled porphyrin with a maximum reflection loss (RL) value of -104.93 dB at 10.09 GHz with 2.80 mm in thickness attaining an efficient bandwidth (EB) (RL ≤ 10 dB) higher than the X-band. Noticeably, polyethylene (PE) was applied as an absorbing matrix presenting a meaningful idea for the development of practical microwave absorbers as a new generation of electromagnetic refining and stealth materials. The presented research provides precious inspiration to tailor novel microwave absorbing materials with metamaterial capability to promote their microwave absorbing performance.

4.
Nanomicro Lett ; 14(1): 171, 2022 Aug 20.
Article in English | MEDLINE | ID: mdl-35987861

ABSTRACT

Developing ultrabroad radar-infrared compatible stealth materials has turned into a research hotspot, which is still a problem to be solved. Herein, the copper sulfide wrapped by reduced graphene oxide to obtain three-dimensional (3D) porous network composite aerogels (CuS@rGO) were synthesized via thermal reduction ways (hydrothermal, ascorbic acid reduction) and freeze-drying strategy. It was discovered that the phase components (rGO and CuS phases) and micro/nano structure (microporous and nanosheet) were well-modified by modulating the additive amounts of CuS and changing the reduction ways, which resulted in the variation of the pore structure, defects, complex permittivity, microwave absorption, radar cross section (RCS) reduction value and infrared (IR) emissivity. Notably, the obtained CuS@rGO aerogels with a single dielectric loss type can achieve an ultrabroad bandwidth of 8.44 GHz at 2.8 mm with the low filler content of 6 wt% by a hydrothermal method. Besides, the composite aerogel via the ascorbic acid reduction realizes the minimum reflection loss (RLmin) of - 60.3 dB with the lower filler content of 2 wt%. The RCS reduction value can reach 53.3 dB m2, which effectively reduces the probability of the target being detected by the radar detector. Furthermore, the laminated porous architecture and multicomponent endowed composite aerogels with thermal insulation and IR stealth versatility. Thus, this work offers a facile method to design and develop porous rGO-based composite aerogel absorbers with radar-IR compatible stealth.

5.
Sci Rep ; 11(1): 20832, 2021 Oct 21.
Article in English | MEDLINE | ID: mdl-34675310

ABSTRACT

In this research, the energy and shielding efficiency of brick, fabricated by clay soil, as a practical building material was reinforced using CuFe2O4 nanoparticles. Initially, the nanoparticles were fabricated using the sol-gel method and then loaded in the brick matrix as a guest. The architected samples were characterized by X-ray powder diffraction (XRD), Fourier transform infrared (FTIR), diffuse reflection spectroscopy (DRS), field emission scanning electron microscopy (FE-SEM), High-resolution transmission electron microscopy (HRTEM), vibrating-sample magnetometer (VSM), differential scanning calorimetry (DSC) thermograms, and vector network analyzer (VNA) analyses. IR absorption of the tailored samples was monitored under an IR source using an IR thermometer. IR absorption and energy band gap attested that inserting the nanoparticles in brick medium led to the acceleration of a warming brick, desirable for energy efficiency in cold climates. It is worth noting that the brick/CuFe2O4 nanocomposite achieved a strong reflection loss (RL) of 58.54 dB and gained an efficient bandwidth as wide as 4.22 GHz (RL > 10 dB) with a thickness of 2.50 mm, meanwhile it shielded more than 58% of the electromagnetic waves at X-band by only a filler loading of 10 wt%. The microwave absorbing and shielding characteristics of the composite are mainly originated from conductive loss, electron hopping, natural and exchange resonance, relaxation loss, secondary fields, as well as eddy current loss. Interestingly, the shielding property of the nanocomposite was significantly generated from its absorbing features, reducing the secondary electromagnetic pollutions produced by the shielding materials applying the impedance mismatching mechanism.

6.
Sci Rep ; 11(1): 16161, 2021 Aug 09.
Article in English | MEDLINE | ID: mdl-34373565

ABSTRACT

In this study, a self-healing hydrogel was prepared that is transparent to visible (Vis) light while absorbing ultraviolet (UV), infrared (IR), and microwave. The optothermal features of the hydrogel were explored by monitoring temperature using an IR thermometer under an IR source. The hydrogel was synthesized using sodium tetraborate decahydrate (borax) and polyvinyl alcohol (PVA) as raw materials based on a facile thermal route. More significantly, graphene oxide (GO) and graphite-like carbon nitride (g-C3N4) nanostructures as well as carbon microsphere (CMS) were applied as guests to more dissect their influence on the microwave and optical characteristics. The morphology of the fillers was evaluated using field emission scanning electron microscopy (FE-SEM). Fourier transform infrared (FTIR) attested that the chemical functional groups of the hydrogel have been formed and the result of diffuse reflection spectroscopy (DRS) confirmed that the hydrogel absorbs UV while is transparent in Vis light. The achieved result implied that the hydrogel acts as an essential IR absorber due to its functional groups desirable for energy efficiency and harvesting. Interestingly, the achieved results have testified that the self-healing hydrogels had the proper self-healing efficiency and self-healing time. Eventually, microwave absorbing properties and shielding efficiency of the hydrogel, hydrogel/GO, g-C3N4, or CMS were investigated, demonstrating the salient microwave characteristics, originated from the established ionic conductive networks and dipole polarizations. The efficient bandwidth of the hydrogel was as wide as 3.5 GHz with a thickness of 0.65 mm meanwhile its maximum reflection loss was 75.10 dB at 14.50 GHz with 4.55 mm in thickness. Particularly, the hydrogel illustrated total shielding efficiency (SET) > 10 dB from 1.19 to 18 and > 20 dB from 4.37 to 18 GHz with 10.00 mm in thickness. The results open new windows toward improving the shielding and energy efficiency using practical ways.

7.
Sci Rep ; 11(1): 11932, 2021 06 07.
Article in English | MEDLINE | ID: mdl-34099804

ABSTRACT

Biomass-derived materials have recently received considerable attention as lightweight, low-cost, and green microwave absorbers. On the other hand, sulfide nanostructures due to their narrow band gaps have demonstrated significant microwave characteristics. In this research, carbon microtubes were fabricated using a biowaste and then functionalized by a novel complementary solvothermal and sonochemistry method. The functionalized carbon microtubes (FCMT) were ornamented by CuCo2S4 nanoparticles as a novel spinel sulfide microwave absorber. The prepared structures illustrated narrow energy band gap and deposition of the sulfide structures augmented the polarizability, desirable for dielectric loss and microwave attenuation. Eventually, the architected structures were blended by polyacrylonitrile (PAN) to estimate their microwave absorbing and antibacterial characteristics. The antibacterial properties against Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus) were scrupulously assessed. Noteworthy, the maximum reflection loss (RL) of the CuCo2S4/PAN with a thickness of 1.75 mm was 61.88 dB at 11.60 GHz, while the architected FCMT/PAN composite gained a broadband efficient bandwidth as wide as 7.91 GHz (RL > 10 dB) and 3.25 GHz (RL > 20 dB) with a thickness of 2.00 mm. More significantly, FCMT/CuCo2S4/PAN demonstrated an efficient bandwidth of 2.04 GHz (RL > 20 dB) with only 1.75 mm in thickness. Interestingly, FCMT/CuCo2S4/PAN and CuCo2S4/PAN composites demonstrated an electromagnetic interference shielding efficiency of more than 90 and 97% at the entire x and ku-band frequencies, respectively.

8.
Nanotechnology ; 32(19): 195201, 2021 May 07.
Article in English | MEDLINE | ID: mdl-33508805

ABSTRACT

In this research, a bioinspired carbon structure was applied as a novel, unique, green, affordable, light weight, thin, and broadband microwave absorbing material. Briefly, the monarch butterfly wing scales were pyrolyzed and then CBWs were functionalized using oxidative treatments, following that they were ornamented by hexagonal ß-Co(OH)2 nanoparticles to improve their microwave absorbing features based on an innovative complementary method by combining sonochemistry and hydrothermal routes. Noticeably, the polyacrylonitrile (PAN) was used as a practical medium to fabricate the microwave absorbers developing an integrated structure and augmenting the relaxation loss mechanism. Various analyses were applied to identify the prepared samples including x-ray powder diffraction, diffuse reflection spectroscopy, Fourier transform infrared, field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), vibrating sample magnetometer, and vector network analyzer. The net-like morphology of FCBWs were fully coated by the hierarchical hexagonal ß-Co(OH)2 nanoparticles. FCBW illustrated a saturation magnetization of 0.06 emu g-1 originated from its defects, distortions, dislocations, unique morphology, as well as folding, developing localized magnetic moments. Noticeably, inserting FCBWs narrow the energy bandgap of ß-Co(OH)2 nanoparticles, amplifying their light absorption and polarizability, desirable for the microwave attenuation. As revealed, FCBW/ß-Co(OH)2/PAN nanocomposite gained strong reflection loss (RL) of 68.41 at 9.08 GHz, while FCBW/PAN achieved broadband efficient bandwidth as wide as 7.97 GHz (RL > 10 dB) with a thickness of 2.00 mm. More significantly, ß-Co(OH)2/PAN nanocomposites demonstrated salient efficient bandwidth of 3.62 GHz (RL > 20 dB) with only 2.50 mm in thickness. Noteworthy, the eye-catching microwave absorptions were obtained by only filler loading of 10 Wt%. The remarkable microwave absorbing properties of the samples were generated from their microwave absorbing mechanisms which were scrupulously dissected. More significantly, the negative imaginary parts were obtained, originated from the produced secondary fields.

9.
Nanotechnology ; 32(6): 065201, 2021 Feb 05.
Article in English | MEDLINE | ID: mdl-33080576

ABSTRACT

The biomass-derived materials emerged as novel, low-cost, green, and light-weight microwave absorbers. On the other hand, the sulfide nanostructures due to narrow band gap demonstrated significant dielectric features. In this research, the pure carbon microfibers were prepared using Erodium cicutarium harvest and they were functionalized by a sonochemistry method. The treated microfibers were coated by Bi2S3 nanoparticles, obtained by a novel modified solvothermal route. X-ray powder diffraction, Fourier transform infrared, diffuse reflection spectroscopy, field emission scanning electron microscopy (FE-SEM), transmission electron microscopy, and vector network analyzer analyses were applied to characterize the features of the prepared structures. The obtained results manifest that the anchoring nanoparticles onto the functionalized microfibers narrowed band gap to 1.35 eV and reinforced polarizability of the nanocomposite, desirable for dielectric attenuation. In this study, the interfacial interactions were modulated using polyacrylonitrile (PAN) and polyvinylidene fluoride. Interestingly, FCMF blended in PAN demonstrated an eye-catching efficient bandwidth as wide as 8.13 GHz (RL > 10 dB) with only 2.00 mm in thickness, whereas it illustrated an outstanding reflection loss of 81.96 at 11.48 GHz with a thickness of 2.50 mm. More significantly, FCMF/Bi2S3/PAN nanocomposite promoted the efficient bandwidth to 3.07 GHz (RL > 20 dB). Noteworthy, all of the samples illustrated total electromagnetic interference shielding effectiveness (SET) more than 15 dB entire the x and ku-band frequency.

10.
Nanotechnology ; 31(49): 495202, 2020 Dec 04.
Article in English | MEDLINE | ID: mdl-32990262

ABSTRACT

In this paper, NiCo2S4 sulphide spinel nanoparticles are prepared using a modified solvothermal route, after which the obtained siegenite nanoparticles are tailored on graphite-like carbon nitride (g-C3N4) nanosheets. The morphology of tailored nanostructures is accomplished via an ion exchange process. Interestingly, the g-C3N4 stick structures are fabricated based on an innovative approach. Moreover, interfacial polarizations at heterojunction interfaces, and medium effects on microwave characteristics are examined, using polystyrene (PS) and polyvinylidene fluoride (PVDF) as polymeric matrices. The specimens are characterized via Fourier transform infrared (FTIR), X-ray powder diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM) analyses. The optical performance of nanostructures is studied by means of diffuse reflection spectroscopy (DRS) analysis, and is suggestive of a narrow band gap for NiCo2S4 and NiCo2S4/g-C3N4 nanostructures. Finally, the material's microwave absorbing features are clarified using a vector network analyzer (VNA) instrument via a wave guide technique. The resulting significant microwave absorptions reveal that our g-C3N4/NiCo2S4/PVDF 40% nanocomposite exhibited seven notches of reflection loss (RL), more than 30 dB in its curve, at 1.75 mm in thickness, while its maximum RL was 59.39 dB at 13.07 GHz. Interestingly, this composite, in a mass fraction of 60%, illustrates an efficient bandwidth of 5.1 GHz (RL > 10 dB) at only 1 mm thickness. It is worth noting that the maximum RL of g-C3N4 stick structures/PVDF measures 74.53 dB at 14.86 GHz, with a broadband efficient bandwidth of 7.96 GHz (RL > 10 dB). More significantly, both g-C3N4/NiCo2S4/PVDF and NiCo2S4/PVDF demonstrated salient electromagnetic interference shielding effectiveness (SE) > 30 dB across both x- and ku-band frequencies.

11.
J Nanosci Nanotechnol ; 19(7): 3911-3918, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-30764950

ABSTRACT

A magnetic composite of SrAl1.3Fe10.7O19 nanoparticles (NPs) and multiwalled carbon nanotubes (MWCNTs) was prepared using a modified Sol-gel method. The MWCNTs were functionalized using a mixture of sulfuric and nitric acids and then coated with SrAl1.3Fe10.7O19 NPs in the presence of poly(methyl methacrylate) (PMMA) in an argon atmosphere furnace. The crystalline structure was studied by X-ray diffraction (XRD) confirming the single phase and hexagonal structure (M-type ferrite) of the SrAl1.3Fe10.7O19 NPs. The magnetic properties of the as-prepared composites investigated by a vibrating sample magnetometer (VSM) revealed that the metallic magnetic NPs have greater magnetization compared to the SrAl1.3Fe10.7O19/MWCNT nanocomposite and exhibit acceptable magnetic behavior at room temperature. The maximum reflection loss of the sample having a coating thickness of 3.10 mm diameter and 30 weight percentage (wt%) of SrAl1.3Fe10.7O19/MWCNT was -44.08 dB at 9.56 GHz, possessing a bandwidth of 2.21 GHz with a microwave absorption up to 10 dB for the X-band. The comparison of the reflection loss in both the X and Ku-band frequencies of the individual components, i.e., silicone rubber, functionalized MWCNT, and SrAl1.3Fe10.7O19/silicone rubber, revealed that the synergistic effect of the components in the nanocomposite originate from a better impedance match. By reducing the thickness to 1.00 mm, the RL was reduced to -14.85 dB at 17.75 GHz possessing a bandwidth of 1.12 GHz (with a microwave absorption up to 10 dB) for the Ku-band. The microwave absorption of the sample was then studied in an anechoic chamber, and a similar result was obtained.

SELECTION OF CITATIONS
SEARCH DETAIL
...