Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicon ; 180: 1-10, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32246951

ABSTRACT

Pinnatoxins (PnTXs) are a group of emerging marine biotoxins produced by the benthic dinoflagellate Vulcanodinium rugosum, currently not regulated in Europe or in any other country in the world. In France, PnTXs were detected for the first time in 2011, in mussels from the Ingril lagoon (South of France, Mediterranean coast). Since then, analyses carried out in mussels from this lagoon have shown high concentrations of PnTXs for several months each year. PnTXs have also been detected, to a lesser extent, in mussels from other Mediterranean lagoons and on the Atlantic and Corsican coasts. In the French data, the main analog is PnTX G (low levels of PnTX A are also present in some samples). No cases of PnTXs poisoning in humans have been reported so far in France or anywhere else in the world. In mice, PnTXs induce acute neurotoxic effects, within a few minutes after oral administration. Clinical signs of toxicity include decreased mobility, paralysis of the hind legs, tremors, jumps and breathing difficulties leading to death by respiratory arrest at high doses. The French agency for food safety (ANSES) recently conducted a review of the state of knowledge related to PnTXs and V. rugosum. Based on (i) the clinical signs of toxicity in mice, (ii) the mode of action of PnTXs as nicotinic acetylcholine receptor competitive antagonists and (iii) knowledge on drugs and natural toxins with PnTX-related pharmacology, potential human symptoms have been extrapolated and proposed. In this work, a provisional acute benchmark value for PnTX G of 0.13 µg/kg bw per day has been derived from an oral acute toxicity study in mice. Based on this value and a large shellfish meat portion size of 400g, a concentration lower than 23 µg PnTX G/kg shellfish meat is not expected to result in adverse effects in humans. ANSES recommends taking into account PnTXs in the French official monitoring program for shellfish production and identified data gaps to refine health risk assessment.


Subject(s)
Dietary Exposure/statistics & numerical data , Environmental Monitoring , Food Safety , Marine Toxins/analysis , Shellfish/statistics & numerical data , Animals , Bivalvia , Dinoflagellida , France , Humans , Marine Toxins/metabolism , Mice , Risk Assessment , Seafood/statistics & numerical data , Shellfish Poisoning
2.
Mar Drugs ; 17(7)2019 Jul 20.
Article in English | MEDLINE | ID: mdl-31330850

ABSTRACT

Pinnatoxins (PnTXs) are emerging neurotoxins that were discovered about 30 years ago. They are solely produced by the marine dinoflagellate Vulcanodinium rugosum, and may be transferred into the food chain, as they have been found in various marine invertebrates, including bivalves. No human intoxication has been reported to date although acute toxicity was induced by PnTxs in rodents. LD50 values have been estimated for the different PnTXs through the oral route. At sublethal doses, all symptoms are reversible, and no neurological sequelae are visible. These symptoms are consistent with impairment of central and peripheral cholinergic network functions. In fact, PnTXs are high-affinity competitive antagonists of nicotinic acetylcholine receptors (nAChRs). Moreover, their lethal effects are consistent with the inhibition of muscle nAChRs, inducing respiratory distress and paralysis. Human intoxication by ingestion of PnTXs could result in various symptoms observed in episodes of poisoning with natural nAChR antagonists. This review updates the available data on PnTX toxicity with a focus on their mode of action on cholinergic networks and suggests the effects that could be extrapolated on human physiology.


Subject(s)
Dinoflagellida/chemistry , Marine Toxins/toxicity , Nicotinic Antagonists/toxicity , Paralysis/chemically induced , Poisoning/etiology , Acetylcholine/metabolism , Alkaloids/chemistry , Alkaloids/toxicity , Animals , Disease Models, Animal , Humans , Lethal Dose 50 , Marine Toxins/chemistry , Muscles/drug effects , Muscles/innervation , Muscles/metabolism , Nicotinic Antagonists/chemistry , Receptors, Nicotinic/metabolism , Spiro Compounds/chemistry , Spiro Compounds/toxicity , Synaptic Transmission/drug effects , Toxicity Tests, Acute
SELECTION OF CITATIONS
SEARCH DETAIL
...