Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiol Spectr ; : e0272323, 2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37772849

ABSTRACT

The ScanSation 100 device (Interscience, France) is an incubator allowing real-time detection of bacterial colony growth by frequently imaging agar plates over time, counting CFU, and detecting colony color. This study evaluated its performance for the early detection of carbapenemase-producing bacteria (CPB) and extended-spectrum ß-Lactamase-producing bacteria (ESBL-PB) from rectal swabs inoculated on CHROMagar mSuperCARBA and ESBL media, respectively. Rectal screening ESwabs collected from patients admitted to Grenoble University Hospital between January and June 2021 were analyzed. After inoculation, chromogenic media were incubated for 24 h in the automaton, with image acquisition every 30 min. ScanStation results were compared to visual observations of the plates after 24 h of incubation. In total, 501 rectal swabs were tested. ScanStation showed 100% positive percent agreement (PPA) for the detection of CPB and ESBL-PB, whereas the PPA of color categorization ranged between 45% and 100%. Negative percent agreement (NPA) ranged between 70% and 98%. Negative predictive values (NPVs) were 100% for both bacterial groups, whereas positive predictive values (PPVs) were 70.3% for CPB and 81.0% for ESBL-PB. Importantly, real-time screening allowed detection of the first suspected colony within 10-14 h of growth, on average, whereas visual observation is usually only performed once a day after 18-24 h of incubation. Our study demonstrates the potential use of early images to accelerate the detection of CPB and ESBL-PB and implement effective and timely infection control measures. IMPORTANCE The ScanStation 100 device is an incubator able to follow the real-time growth of bacterial colonies on agar plates through digital imaging, allowing users to sort plates according to the presence or absence of colonies, and to distinguish their color using four numeric color filters. Real-time screening shows that first colony detection is possible much earlier (after 10-14 h of growth, on average), whereas visual observation is usually performed only once a day after 18-24 h of incubation. The ScanStation device, combined with chromogenic agar media, is an efficient automated screening method to accelerate the detection of Gram-negative multidrug-resistant bacteria in laboratories that do not have access to larger laboratory automation systems. Our study shows that setting the image acquisition to one or two early images may allow for the detection of positive samples that were inoculated in the morning, by the end of the working day.

2.
Sci Rep ; 12(1): 21451, 2022 12 12.
Article in English | MEDLINE | ID: mdl-36509808

ABSTRACT

Tularemia is a zoonosis caused by the bacterium Francisella tularensis. Leporids are primary sources of human infections in the northern hemisphere. Africa is classically considered free of tularemia, but recent data indicate that this dogma might be wrong. We assessed the presence of this disease in wild leporids in Algeria. Between 2014 and 2018, we collected 74 leporids carcasses from spontaneously dead or hunted animals. Francisella tularensis DNA was detected by specific real-time PCR tests in 7/36 (19.44%) Cape hares (Lepus capensis) and 5/38 (13.15%) wild rabbits (Oryctolagus cuniculus). Known tularemia arthropod vectors infested half of the PCR-positive animals. At necropsy, F. tularensis-infected animals presented with an enlarged spleen (n = 12), enlarged adrenal glands (12), liver discoloration (12), hemorrhages (11), and pneumonia (11). Immunohistological examination of liver tissue from one animal was compatible with the presence of F. tularensis. Our study demonstrates the existence of tularemia in lagomorphs in Algeria. It should encourage investigations to detect this disease among the human population of this country.


Subject(s)
Francisella tularensis , Hares , Lagomorpha , Tularemia , Animals , Rabbits , Humans , Francisella tularensis/genetics , Tularemia/diagnosis , Tularemia/veterinary , Hares/genetics , Zoonoses , Real-Time Polymerase Chain Reaction
3.
Microorganisms ; 9(7)2021 Jun 28.
Article in English | MEDLINE | ID: mdl-34203503

ABSTRACT

In 2018, the incidence of tularemia increased twofold in the west of France, with many pneumonic forms, suggesting environmental sources of infection. We investigated the presence of Francisellatularensis subsp. holarctica and other Francisella species DNA in the natural aquatic environment of this geographic area. Two sampling campaigns, in July 2019 and January 2020, allowed the collection of 87 water samples. Using a combination of real-time PCR assays, we tested the presence of either Francisella sp., F. tularensis/F. novicida, and F. tularensis subsp. holarctica, the latter being the only tularemia agent in Europe. Among 57 water samples of the first campaign, 15 (26.3%) were positive for Francisella sp., nine (15.8%) for F. tularensis and/or F. novicida, and four (7.0%) for F. tularensis subsp. holarctica. Ratios were 25/30 (83.3%), 24/30 (80.0%), and 4/30 (13.3%) for the second campaign. Among the thirty sites sampled during the two campaigns, nine were positive both times for Francisella sp., seven for F. tularensis and/or F. novicida, and one for F. tularensis subsp. holarctica. Altogether, our study reveals a high prevalence of Francisella sp. DNA (including the tularemia agent) in the studied aquatic environment. This aquatic environment could therefore participate in the endemicity of tularemia in the west of France.

4.
Emerg Microbes Infect ; 10(1): 277-290, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33538648

ABSTRACT

Francisella tularensis, a tier 1 select agent, is the causative bacterium of tularemia, a zoonosis with a large animal reservoir. However, F. tularensis, like many other Francisella species, is assumed to have an aquatic reservoir. The mechanisms of Francisella species persistence in surface water remain poorly characterized. In this study, we deeply investigated the long-term interactions of the tularemia agent F. tularensis subsp. holarctica, F. novicida or F. philomiragia with amoebae of the Acanthamoeba species. In amoeba plate screening tests, all the Francisella species tested resisted the attack by amoebae. In in vitro infection models, intra-amoebic growth of Francisella varied according to the involved bacterial species and strains, but also the amoeba culture medium used. In co-culture models, the amoebae favoured Francisella survival over 16 days, which was likely dependent on direct contact between bacteria and amoebae for F. novicida and on amoeba-excreted compounds for F. novicida and for F. tularensis. In a spring water co-culture model, amoebae again enhanced F. novicida survival and preserved bacterial morphology. Overall, our results demonstrate that amoebae likely promote Francisella survival in aquatic environments, including the tularemia agent F. tularensis. However, bacteria-amoebae interactions are complex and depend on the Francisella species considered.


Subject(s)
Amoeba/microbiology , Francisella tularensis/growth & development , Fresh Water/microbiology , Microbial Viability
SELECTION OF CITATIONS
SEARCH DETAIL
...