Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Reprod Toxicol ; 99: 168-176, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33049332

ABSTRACT

Intrauterine growth restriction (IUGR) affects 10-15% of all pregnancies worldwide. IUGR may result from maternal, placental or fetal origin. Maternal malnutrition before and during pregnancy represents the most prevalent non-genetic or placental cause. IUGR reflects an abnormal adaptive fetal growth in a deleterious environment. Individuals born after IUGR are more susceptible to develop diseases related to subsequent stressors through a lifetime. Animal models help to decipher the underlying causes of dysregulated pathways and molecular modifications conditioning health and disease in adult offspring born after IUGR. The aim of this review is to summarize current knowledge on long term consequences of IUGR, integrating animal models and human studies for a better care of IUGR-born individuals in a life course perspective.


Subject(s)
Fetal Growth Retardation , Adult , Animals , Disease Susceptibility , Environmental Pollutants/toxicity , Female , Humans , Pregnancy
2.
J Dev Orig Health Dis ; 8(4): 448-464, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28460648

ABSTRACT

Individuals born after intrauterine growth restriction (IUGR) have an increased risk of perinatal morbidity/mortality, and those who survive face long-term consequences such as cardiovascular-related diseases, including systemic hypertension, atherosclerosis, coronary heart disease and chronic kidney disease. In addition to the demonstrated long-term effects of decreased nephron endowment and hyperactivity of the hypothalamic-pituitary-adrenal axis, individuals born after IUGR also exhibit early alterations in vascular structure and function, which have been identified as key factors of the development of cardiovascular-related diseases. The endothelium plays a major role in maintaining vascular function and homeostasis. Therefore, it is not surprising that impaired endothelial function can lead to the long-term development of vascular-related diseases. Endothelial dysfunction, particularly impaired endothelium-dependent vasodilation and vascular remodeling, involves decreased nitric oxide (NO) bioavailability, impaired endothelial NO synthase functionality, increased oxidative stress, endothelial progenitor cells dysfunction and accelerated vascular senescence. Preventive approaches such as breastfeeding, supplementation with folate, vitamins, antioxidants, L-citrulline, L-arginine and treatment with NO modulators represent promising strategies for improving endothelial function, mitigating long-term outcomes and possibly preventing IUGR of vascular origin. Moreover, the identification of early biomarkers of endothelial dysfunction, especially epigenetic biomarkers, could allow early screening and follow-up of individuals at risk of developing cardiovascular and renal diseases, thus contributing to the development of preventive and therapeutic strategies to avert the long-term effects of endothelial dysfunction in infants born after IUGR.


Subject(s)
Cardiovascular Diseases/physiopathology , Endothelium, Vascular/physiopathology , Fetal Growth Retardation/physiopathology , Kidney Diseases/physiopathology , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/epidemiology , Female , Fetal Growth Retardation/diagnosis , Fetal Growth Retardation/epidemiology , Humans , Infant, Newborn , Kidney Diseases/diagnosis , Kidney Diseases/epidemiology , Nitric Oxide/physiology , Oxidative Stress/physiology , Vasodilation/physiology
3.
Placenta ; 35(11): 891-9, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25249153

ABSTRACT

INTRODUCTION: Intrauterine growth restriction (IUGR) affects ∼8% of all pregnancies and is associated with major perinatal mortality and morbidity, and with an increased risk to develop cardiovascular diseases in adulthood. Despite identification of several risk factors, the mechanisms implicated in the development of IUGR remain poorly understood. In case of placental insufficiency, reduced delivery of oxygen and/or nutrients to the fetus could be associated with alterations in the umbilical circulation, contributing further to the impairment of maternal-fetal exchanges. We compared the structural and functional properties of umbilical cords from growth-restricted and appropriate for gestational age (AGA) term newborns, with particular attention to the umbilical vein (UV). METHODS: Human umbilical cords were collected at delivery. Morphological changes were investigated by histomorphometry, and UV's reactivity by pharmacological studies. RESULTS: Growth-restricted newborns displayed significantly lower growth parameters, placental weight and umbilical cord diameter than AGA controls. Total cross-section and smooth muscle areas were significantly smaller in UV of growth-restricted neonates than in controls. Maximal vasoconstriction achieved in isolated UV was lower in growth-restricted boys than in controls, whereas nitric oxide-induced relaxation was significantly reduced in UV of growth-restricted girls compared to controls. CONCLUSION: IUGR is associated with structural alterations of the UV in both genders, and with a decreased nitric oxide-induced relaxation in UV of newborn girls, whereas boys display impaired vasoconstriction. Further investigations will allow to better understand the regulation of umbilical circulation in growth-restricted neonates, which could contribute to devise potential novel therapeutic strategies to prevent or limit the development of IUGR.


Subject(s)
Fetal Growth Retardation/pathology , Umbilical Veins/pathology , Vasodilation , Adult , Case-Control Studies , Female , Fetal Growth Retardation/physiopathology , Humans , Infant, Newborn , Male , Nitric Oxide , Pregnancy
4.
Am J Physiol Lung Cell Mol Physiol ; 293(5): L1171-82, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17720874

ABSTRACT

Adverse events during the perinatal period, like hypoxia, have been associated with adult diseases. In pulmonary vessels, K(+) channels play an important role in the regulation of vascular tone. In the fetus, Ca(2+)-activated K(+) channels (K(Ca)) are predominant, whereas from birth voltage-gated K(+) channels (K(V)) prevail in the adult. We postulated that perinatal hypoxia could alter this maturational shift and influence regulation of pulmonary vascular tone in relation to K(+) channels in adulthood. We evaluated the effects of perinatal hypoxia on K(V) and K(Ca) channels in the adult main pulmonary artery (PA) using a murine model. Electrophysiological measurements showed a greater outward current in PA smooth muscle cells of mice born in hypoxia than in controls. In controls, only K(V) channels contributed to this current, whereas in mice born in hypoxia both K(V) and K(Ca) channels were implicated. K(V) channel activity was even higher in mice born in hypoxia than in controls. Therefore, perinatal hypoxia results in increased K(Ca) and K(V) channel activity in adult PA. Moreover, PA of adults born in hypoxia displayed higher large-conductance K(Ca) alpha-subunit and K(V)1.5 alpha-subunit protein expression than controls. Interestingly, relaxation induced by nitric oxide (NO) donors [S-nitroso-N-acetyl-D,l-penicillamine, 2-(N,N-diethylamino)-diazenolate-2-oxide] in isolated PA of control mice was not mediated by K(Ca) channels and only slightly by K(V) channels, whereas following perinatal hypoxia both K(Ca) and K(V) channels contributed to this relaxation. Thus perinatal hypoxia results in altered expression and activity of different K(+) channels in the adult main PA, which could contribute to modifications of pulmonary vasoreactivity.


Subject(s)
Hypoxia/metabolism , Muscle, Smooth, Vascular/metabolism , Potassium Channels/metabolism , Pulmonary Artery/cytology , Animals , Blotting, Western , Female , Mice , Mice, Inbred C57BL , Nitric Oxide Donors/pharmacology , Vasodilation
SELECTION OF CITATIONS
SEARCH DETAIL
...