Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 14(7): 9525-9534, 2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35138788

ABSTRACT

Graphene, a zero-gap semiconductor, absorbs 2.3% of incident photons in a wide wavelength range as a free-standing monolayer, whereas 50% is expected for ∼90 layers. Adjusting the layer number allows the tailoring of the photoresponse; however, controlling the thickness of multilayer graphene remains challenging on the wafer scale. Nanocrystalline graphene or graphite (NCG) can instead be grown with controlled thickness. We have fabricated photodetectors from NCG that are spectrally flat in the near-infrared to short-wavelength infrared region by tailoring the layer thicknesses. Transfer matrix simulations were used to determine the NCG thickness for maximum light absorption in the NCG layer on a silicon substrate. The extrinsic and intrinsic photoresponse was determined from 1100 to 2100 nm using chromatic aberration-corrected photocurrent spectroscopy. Diffraction-limited hyperspectral photocurrent imaging shows that the biased photoresponse is unipolar and homogeneous across the device area, whereas the short-circuit photoresponse gives rise to positive and negative photocurrents at the electrodes. The intrinsic photoresponses are wavelength-independent, indicative of bolometric and electrothermal photodetection.

2.
ACS Nano ; 14(3): 2709-2717, 2020 Mar 24.
Article in English | MEDLINE | ID: mdl-31920075

ABSTRACT

Single-walled carbon nanotubes as emerging quantum-light sources may fill a technological gap in silicon photonics due to their potential use as near-infrared, electrically driven, classical or nonclassical emitters. Unlike in photoluminescence, where nanotubes are excited with light, electrical excitation of single tubes is challenging and heavily influenced by device fabrication, architecture, and biasing conditions. Here we present electroluminescence spectroscopy data of ultra-short-channel devices made from (9,8) carbon nanotubes emitting in the telecom band. Emissions are stable under current biasing, and no enhanced suppression is observed down to 10 nm gap size. Low-temperature electroluminescence spectroscopy data also reported exhibit cold emission and line widths down to 2 meV at 4 K. Electroluminescence excitation maps give evidence that carrier recombination is the mechanism for light generation in short channels. Excitonic and trionic emissions can be switched on and off by gate voltage, and corresponding emission efficiency maps were compiled. Insights are gained into the influence of acoustic phonons on the line width, absence of intensity saturation and exciton-exciton annihilation, environmental effects such as dielectric screening and strain on the emission wavelength, and conditions to suppress hysteresis and establish optimum operation conditions.

3.
ACS Nano ; 14(1): 948-963, 2020 Jan 28.
Article in English | MEDLINE | ID: mdl-31742998

ABSTRACT

The enantiomer-level isolation of single-walled carbon nanotubes (SWCNTs) in high concentration and with high purity for nanotubes greater than 1.1 nm in diameter is demonstrated using a two-stage aqueous two-phase extraction (ATPE) technique. In total, five different nanotube species of ∼1.41 nm diameter are isolated, including both metallics and semiconductors. We characterize these populations by absorbance spectroscopy, circular dichroism spectroscopy, resonance Raman spectroscopy, and photoluminescence mapping, revealing and substantiating mod-dependent optical dependencies. Using knowledge of the competitive adsorption of surfactants to the SWCNTs that controls partitioning within the ATPE separation, we describe an advanced acid addition methodology that enables the fine control of the separation of these select nanotubes. Furthermore, we show that endohedral filling is a previously unrecognized but important factor to ensure a homogeneous starting material and further enhance the separation yield, with the best results for alkane-filled SWCNTs, followed by empty SWCNTs, with the intrinsic inhomogeneity of water-filled SWCNTs causing them to be worse for separations. Lastly, we demonstrate the potential use of these nanotubes in field-effect transistors.

SELECTION OF CITATIONS
SEARCH DETAIL
...