Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Nanosci Nanotechnol ; 20(3): 1968-1976, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31492369

ABSTRACT

Three different types of hydroxyapatite (HAp) based porous ceramic materials were obtained through the modified gel casting method; one of them was made of commercial HAp particles and used as a reference in the mechanical characterization. Other type of ceramic was elaborated using HAp nanofibers, which were synthesized through the microwave assisted hydrothermal method and they possess a high crystallinity, purity and a preferential crystalline orientation in the [300], such were grown along the [001]. The third type of porous ceramic was elaborated using a combination of HAp nanofibers and particles. The HAp nanofibers and particles were previously analyzed by using X-ray diffraction to study their crystal structure, the topology and morphology of those HAp aggregates were observed with scanning electron microscopy (SEM); high-resolution transmission electron microscopy was useful to carry out a detailed crystallographic analysis. Afterwards, an organic phase made of gelatin was added to the porous ceramics in order to obtain nanocomposite materials. Two different concentrations of gelatin were used separately, and the combination of three types of porous ceramics and two concentrations of gelatin produced six different nanocomposite materials. All of these composite materials were observed through the SEM to see their topology and porosity and after that, they were probed under compression tests and their corresponding mechanical behavior was analyzed. All the composites showed mechanical properties similar to those observed in cellular materials. The Young modulus and ultimate strength were compared, finally, it was determined the contribution to the mechanical properties of the morphology, crystalline quality and preferential crystalline orientation in the HAp nanofibers. According to such properties, the composite material made of HAp nanofibers has bone tissue implant potential applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...