Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Antioxidants (Basel) ; 8(12)2019 Dec 11.
Article in English | MEDLINE | ID: mdl-31835715

ABSTRACT

Oxidative stress plays a role in carcinogenesis, but it also contributes to the modulation of tumor cells and microenvironment caused by chemotherapeutics. One of the consequences of oxidative stress is lipid peroxidation, which can, through reactive aldehydes such as 4-hydroxy-2-nonenal (HNE), affect cell signaling pathways. On the other hand, cancer stem cells (CSC) are now recognized as a major factor of malignancy by causing metastasis, relapse, and therapy resistance. Here, we evaluated whether oxidative stress and HNE modulation of the microenvironment can influence CSC growth, modifications of the epithelial to mesenchymal transition (EMT) markers, the antioxidant system, and the frequency of breast cancer stem cells (BCSC). Our results showed that oxidative changes in the microenvironment of BCSC and particularly chronic oxidative stress caused changes in the proliferation and growth of breast cancer cells. In addition, changes associated with EMT, increase in glutathione (GSH) and Nuclear factor erythroid 2-related factor 2 (NRF2) were observed in breast cancer cells grown on HNE pretreated collagen and under chronic oxidative stress. Our results suggest that chronic oxidative stress can be a bidirectional modulator of BCSC fate. Low levels of HNE can increase differentiation markers in BCSC, while higher levels increased GSH and NRF2 as well as certain EMT markers, thereby increasing therapy resistance.

2.
Molecules ; 24(14)2019 Jul 23.
Article in English | MEDLINE | ID: mdl-31340589

ABSTRACT

Developing new antibiotics is currently very important since antibiotic resistance is one of the biggest problems of global health today. In the search for a new class of potential antimicrobial agents, ten new compounds were designed and synthesized based on the quinuclidinium heterocyclic core and the oxime functional group. The antimicrobial activity was assessed against a panel of representative gram-positive and gram-negative bacteria. All compounds demonstrated potent activity against the tested microorganisms, with the minimum inhibitory concentration (MIC) values ranging from 0.25 to 256.00 µg/mL. Among the tested compounds, two quaternary compounds, para-N-chlorobenzyl and meta-N-bromobenzyl quinuclidinium oximes, displayed the most potent and broad-spectrum activity against both gram-positive and gram-negative bacterial strains (MIC values from 0.25 to 4.00 µg/mL), with the lowest value for the important multidrug resistant gram-negative pathogen Pseudomonas aeruginosa. In the case of Klebsiella pneumoniae, activity of those compounds are 256-fold and 16-fold better than gentamicin, respectively. MTT assays showed that compounds are nontoxic for human cell lines. Multi-way analysis was used to separately reduce dimensionality of quantum chemical data and biological activity data to obtain a regression model and the required parameters for the enhancement of biological activity.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Drug Design , Oximes/chemical synthesis , Quinuclidines/chemical synthesis , Anti-Bacterial Agents/pharmacology , Bacillus cereus/drug effects , Bacillus cereus/growth & development , Clostridium perfringens/drug effects , Clostridium perfringens/growth & development , Enterococcus faecalis/drug effects , Enterococcus faecalis/growth & development , Escherichia coli/drug effects , Escherichia coli/growth & development , Gentamicins/pharmacology , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/growth & development , Microbial Sensitivity Tests , Multifactor Dimensionality Reduction , Oximes/pharmacology , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/growth & development , Quinuclidines/pharmacology , Staphylococcus aureus/drug effects , Staphylococcus aureus/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...