Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 128(15): 155301, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35499894

ABSTRACT

Using femtosecond time-resolved x-ray diffraction, we investigated optically excited coherent acoustic phonons in the Weyl semimetal TaAs. The low symmetry of the (112) surface probed in our experiment enables the simultaneous excitation of longitudinal and shear acoustic modes, whose dispersion closely matches our simulations. We observed an asymmetry in the spectral line shape of the longitudinal mode that is notably absent from the shear mode, suggesting a time-dependent frequency chirp that is likely driven by photoinduced carrier diffusion. We argue on the basis of symmetry that these acoustic deformations can transiently alter the electronic structure near the Weyl points and support this with model calculations. Our study underscores the benefit of using off-axis crystal orientations when optically exciting acoustic deformations in topological semimetals, allowing one to transiently change their crystal and electronic structures.

2.
Struct Dyn ; 6(2): 024302, 2019 Mar.
Article in English | MEDLINE | ID: mdl-31041360

ABSTRACT

We combine ultrafast X-ray diffraction (UXRD) and time-resolved Magneto-Optical Kerr Effect (MOKE) measurements to monitor the strain pulses in laser-excited TbFe2/Nb heterostructures. Spatial separation of the Nb detection layer from the laser excitation region allows for a background-free characterization of the laser-generated strain pulses. We clearly observe symmetric bipolar strain pulses if the excited TbFe2 surface terminates the sample and a decomposition of the strain wavepacket into an asymmetric bipolar and a unipolar pulse, if a SiO2 glass capping layer covers the excited TbFe2 layer. The inverse magnetostriction of the temporally separated unipolar strain pulses in this sample leads to a MOKE signal that linearly depends on the strain pulse amplitude measured through UXRD. Linear chain model simulations accurately predict the timing and shape of UXRD and MOKE signals that are caused by the strain reflections from multiple interfaces in the heterostructure.

3.
Phys Rev E ; 97(5-1): 053112, 2018 May.
Article in English | MEDLINE | ID: mdl-29906915

ABSTRACT

In this study a single laser pulse spatially shaped into a ring is focused into a thin water layer, creating an annular cavitation bubble and cylindrical shock waves: an outer shock that diverges away from the excitation laser ring and an inner shock that focuses towards the center. A few nanoseconds after the converging shock reaches the focus and diverges away from the center, a single bubble nucleates at the center. The inner diverging shock then reaches the surface of the annular laser-induced bubble and reflects at the boundary, initiating nucleation of a tertiary bubble cloud. In the present experiments, we have performed time-resolved imaging of shock propagation and bubble wall motion. Our experimental observations of single-bubble cavitation and collapse and appearance of ring-shaped bubble clouds are consistent with our numerical simulations that solve a one-dimensional Euler equation in cylindrical coordinates. The numerical results agree qualitatively with the experimental observations of the appearance and growth of large bubble clouds at the smallest laser excitation rings. Our technique of shock-driven bubble cavitation opens interesting perspectives for the investigation of shock-induced single-bubble or multibubble cavitation phenomena in thin liquids.

4.
Sci Rep ; 6: 29143, 2016 07 05.
Article in English | MEDLINE | ID: mdl-27377262

ABSTRACT

Surface magnetoelastic waves are coupled elastic and magnetic excitations that propagate along the surface of a magnetic material. Ultrafast optical techniques allow for a non-contact excitation and detection scheme while providing the ability to measure both elastic and magnetic components individually. Here we describe a simple setup suitable for excitation and time resolved measurements of high frequency magnetoelastic waves, which is based on the transient grating technique. The elastic dynamics are measured by diffracting a probe laser pulse from the long-wavelength spatially periodic structural deformation. Simultaneously, a magnetooptical measurement, either Faraday or Kerr effect, is sensitive to the out-of-plane magnetization component. The correspondence in the response of the two channels probes the resonant interaction between the two degrees of freedom and reveals their intimate coupling. Unraveling the observed dynamics requires a detailed understanding of the spatio-temporal evolution of temperature, magnetization and thermo-elastic strain in the ferromagnet. Numerical solution of thermal diffusion in two dimensions provides the basis on which to understand the sensitivity in the magnetooptic detection.

5.
Phys Rev Lett ; 106(21): 214503, 2011 May 27.
Article in English | MEDLINE | ID: mdl-21699304

ABSTRACT

Direct real-time visualization and measurement of laser-driven shock generation, propagation, and 2D focusing in a sample are demonstrated. A substantial increase of the pressure at the convergence of the cylindrical acoustic shock front is observed experimentally and simulated numerically. Single-shot acquisitions using a streak camera reveal that at the convergence of the shock wave in water the supersonic speed reaches Mach 6, corresponding to the multiple gigapascal pressure range ∼30 GPa.

6.
Phys Rev Lett ; 102(10): 107402, 2009 Mar 13.
Article in English | MEDLINE | ID: mdl-19392158

ABSTRACT

Picosecond laser ultrasonic techniques for acoustic wave generation and detection have been employed to probe shear acoustic waves in liquid glycerol at gigahertz frequencies. The experimental approach uses a unique laser pulse shaping technique and a crystallographically canted metal layer to generate frequency-tunable transverse acoustic waves, and uses time-domain coherent Brillouin scattering to detect the waves after they propagate through a liquid layer and into a solid substrate. A linear frequency dependence is found for both the shear speed and attenuation rate in glycerol.

SELECTION OF CITATIONS
SEARCH DETAIL
...