Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 16(18)2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37763448

ABSTRACT

Very few metals can be found in metallic form in nature; the vast majority have to be processed from their ores at a great cost in terms of energy and money [...].

2.
Materials (Basel) ; 16(5)2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36902962

ABSTRACT

The hydrocarbon industry constantly requires a better understanding of stainless-steel welding metallurgy. Despite the fact that gas metal arc welding (GMAW) is one of the most commonly employed welding processes in the petrochemical industry, the process is characterized by the presence of a high number of variables to control in order to obtain components that are dimensionally repeatable and satisfy the functional requirements. In particular, corrosion is still a phenomenon that highly affects the performance of the exposed materials, and special attention must be paid when welding is applied. In this study, the real operating conditions of petrochemical industry were reproduced through an accelerated test in a corrosion reactor at 70 °C for 600 h, exposing robotic GMAW samples free of defects with suitable geometry. The results show that, even if duplex stainless steels are characterized for being more corrosion resistant than other stainless steels, under these conditions it was possible to identify microstructural damage. In detail was found that the corrosion properties were strongly related to the heat input during welding and that the best corrosion properties can be obtained with the higher heat input.

3.
Materials (Basel) ; 15(22)2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36431381

ABSTRACT

In the present work, Plasma Electrolytic Oxidation (PEO) coatings were produced on zinc-aluminized carbon steels (Galvalume commercial treatment). In addition, copper particles of various sizes were introduced into the coating in order to produce samples with antifouling properties. The particles were successfully embedded into the coating. A higher number of embedded particles was observed when these are in sub-micrometric size and obtained in pulsed current. The presence of particles produces significant antifouling properties on the sample's surfaces during the first 20 days of immersion. The presence of the particles reduces the corrosion resistance in comparison to the samples PEO coated without the particles; however, the corrosion resistance remain higher than the one of the untreated sample.

4.
Materials (Basel) ; 15(20)2022 Oct 13.
Article in English | MEDLINE | ID: mdl-36295197

ABSTRACT

Duplex stainless steels (DSSs) are a group of stainless steels characterized by a biphasic microstructure consisting of ferrite and austenite [...].

5.
Nanomaterials (Basel) ; 12(12)2022 Jun 07.
Article in English | MEDLINE | ID: mdl-35745293

ABSTRACT

(1) Objective: To evaluate and compare the depth of cure (DOC) of two bulk-fill flowable composites (Filtek Bulk Fill Flowable Restorative and Tetric EvoFlow Bulk Fill), two conventional flowable composites (Filtek Supreme XTE Flowable Restorative and G-ænial Flo X) and one high-strength universal injectable composite (G-ænial Universal Injectable). (2) Methods: specimens were placed in a stainless-steel mold with an orifice of 4 mm in diameter and 10 mm in depth and light-cured for 20 s using a light emitting diode (LED) light-curing unit (LCU) with an irradiance of 1000 mW/cm2; depth of cure was assessed using the ISO 4049 scrape technique, and the absolute length of the specimen of cured composite was measured in millimeters with a digital caliper. The same procedure was repeated with 14 samples for each material under investigation, for a total number of 70 test bodies. Material roughness and hardness results were also investigated using, respectively, a 3D laser confocal microscope (LEXT OLS 4100; Olympus) at ×5 magnification and a Vickers diamond indenter (Vickers microhardness tester, Shimadzu®, Kyoto, Japan) under 10-N load and a 30 s dwell time. SEM images at 3000 and 9000 magnification were collected in order to study the materials' filler content. Statistical analysis were performed by a commercial statistical software package (SPSS) and data were analyzed using multiple comparison Dunnett's test. (3) Results: The average DOC of both bulk-fill composites was more than 4 mm, as a range of 3.91 and 4.53 mm with an average value of 4.24 and 4.12 mm, while that of the conventional flowable composites was much lower, as a range of 2.47 and 2.90 mm with an average value of 2.58 and 2.84 mm; DOC of the high-strength injectable composite was greater than the one of traditional composites, but not to the level of bulk-fill materials, as a range of 2.82 and 3.01 mm with an average value of 3.02 mm. Statistical analysis revealed significant differences (p-values < 0.05) in the depth of cure between bulk fill flowable composites and other composites, while there was no difference (p-values > 0.05) between the materials of the same type. (4) Conclusions: Bulk-fill flowable composites showed significantly higher depth of cure values than both traditional flowable composites and high-strength injectable composites.

6.
Materials (Basel) ; 14(6)2021 Mar 21.
Article in English | MEDLINE | ID: mdl-33801003

ABSTRACT

In this work, the composition of an electrolyte was selected and optimized to induce the formation of hydroxyapatite during Plasma electrolytic oxidation (PEO) treatment on an AZ31 alloy for application in bioabsorbable implants. In detail, the PEO process, called PEO-BIO (Plasma Electrolytic Oxidation-Biocompatible), was performed using a silicate-phosphate-based electrolyte with the addition of calcium oxide in direct-current mode using high current densities and short treatment times. For comparison, a known PEO process for producing anticorrosive coatings, called standard, was applied on the same alloy. The coatings were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and XPS analyses. The corrosion performance was evaluated in simulated body fluid (SBF) at 37 °C. The coating produced on the PEO-BIO sample was porous and thicker than the standard PEO one, with zones enriched in Ca and P. The XRD analysis showed the formation of hydroxyapatite and calcium oxides in addition to magnesium-silicon oxide and magnesium oxide in the PEO-BIO sample. The corrosion resistance of PEO-BIO sample was comparable with that of a traditional PEO treated sample, and higher than that of the untreated alloy.

7.
Materials (Basel) ; 14(2)2021 Jan 08.
Article in English | MEDLINE | ID: mdl-33429946

ABSTRACT

A novel high silicon austempered (AHS) steel has been studied in this work. The effect of different austenitizing temperatures, in full austenitic and biphasic regime, on the final microstructure was investigated. Specimens were austenitized at 780 °C, 830 °C, 850 °C and 900 °C for 30 min and held isothermally at 350 °C for 30 min. A second heat treatment route was performed which consisted of austenitizing at 900 °C for 30 min and austempering at 300 °C, 350 °C and 400 °C for 30 min. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) have been used to evaluate the microstructural evolution. These techniques revealed that the microstructures were composed of carbide-free bainite, ferrite, martensite and retained austenite (RA) in different volume fractions (Vγ). An aqueous borate buffer solution with 0.3 M H3BO3 and 0.075 M Na2B4O7∂10H2O (pH = 8.4) was used for corrosion tests in order to evaluate the influence of the different volume fractions of retained austenite on the corrosion properties of the specimens. The results showed that when increasing the austenitization temperatures, the volume fractions of retained austenite reached a maximum value at 850 °C, and decrease at higher temperatures. The corrosion properties were investigated after 30 min and 24 h immersion by means of potentiodynamic polarization (after 30 min) and electrochemical impedance spectroscopy (after both 30 min and 24 h) tests. The corrosion resistance of the samples increased with increases in the volume fraction of retained austenite due to lower amounts of residual stresses.

8.
Materials (Basel) ; 13(7)2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32244666

ABSTRACT

Prestrained at 5% and 15% duplex stainless steel UNS S32750 specimens have been subjected to electropulsing treatments with current density of 100 A/mm2 and 200 A/mm2 and 100 and 500 pulses for each current density value. Corrosion tests, X-ray diffraction, microhardness and residual stresses were collected before and after the electropulsing treatments. Tensile tests were performed after the electropulsing treatments in order to compare the mechanical response to reference tensile tests performed before pulsing treatments. Increase in fracture strain was observed after pulsing treatment in comparison to the reference tensile tests. A decrease in microhardness was also observed after electropulsing treatments for both degrees of prestrain. Electropulsing treatment almost eliminates the work-hardened state in the 5% prestrained specimens while partially recovered the 15% prestrained material increasing both uniform and fracture strain. Bulk temperature of the samples remained the same for all treatments duration. The effect are to be addressed to a combined effect of increase in atomic flux due to the electrical current and local joule heating in correspondence of crystal defects. Electropulsing treatment applied to metallic alloys is a promising technique to reduce the work hardening state without the need of annealing treatments in a dedicated furnace.

9.
Materials (Basel) ; 12(12)2019 Jun 13.
Article in English | MEDLINE | ID: mdl-31200532

ABSTRACT

Since the late 1950s, an effect of electrical current in addition to joule heating on the deformation of metals called the Electroplastic Effect (EPE) has been known. It is used nowadays in the so-called Electrically Assisted Forming (EAF) processes, but the understanding of the phenomenon is not very clear yet. It has been found that EPE increases the formability of high stacking fault energy (SFE) materials, while low SFE materials reach fracture prematurely. Since Duplex Stainless Steels (DSSs) possess a microstructure consisting of two phases with very different SFE (low SFE austenite and high SFE ferrite) and they are widely used in industry, we investigated EPE on those alloys. Tensile tests at 5 A/mm2, 10 A/mm2 and 15 A/mm2 current densities along with thermal counterparts were conducted on UNS S32101, UNS S32205, UNS S32304 and UNS S32750. The DSS grades were characterized by means of optical microscopy, X-ray diffraction and their mechanical properties (ultimate tensile strength, total elongation, uniform elongation and yield stress). An increase in uniform elongation for the electrical tests compared to the thermal counterparts as well as an increase in total elongation was found. No differences were observed on the yield stress and on the ultimate tensile strength. Un uneven distribution of the current because of the different resistivity and work hardening of the two phases has been hypothesized as the explanation for the positive effect of EPE.

10.
J Prosthet Dent ; 121(5): 866.e1-866.e8, 2019 May.
Article in English | MEDLINE | ID: mdl-31036253

ABSTRACT

STATEMENT OF PROBLEM: The effect of clinical adjustments on the strength of cemented computer-aided design and computer-aided manufacturing (CAD-CAM) monolithic materials under aging challenge is unclear. PURPOSE: The purpose of this in vitro study was to assess the surface roughness and fracture resistance (with or without mechanical aging) of cemented CAD-CAM monolithic materials submitted to grinding and polishing procedures. MATERIAL AND METHODS: Disks of Lava Ultimate, Vita Enamic, crystallized Vita Suprinity, and IPS e.max CAD were analyzed for roughness after polishing by using silicon carbide papers (Lava Ultimate and Vita Enamic) or glazing (IPS e.max CAD and Vita Suprinity) (control), after grinding by using 30-µm grit diamond rotary instruments, and after grinding and polishing by using a polishing kit. For fracture resistance, a simplified trilayer model consisting of a restorative disk, an epoxy resin disk, and a steel ring was used. The bonded trilayer disks received the same treatments described for the roughness analysis. Half of the specimens underwent mechanical aging for 1×106 cycles. All specimens were loaded until failure. The Weibull modulus was calculated. RESULTS: The IPS e.max CAD and Vita Suprinity showed the highest roughness after grinding and the lowest at baseline. For the Lava Ultimate and Vita Enamic, polishing provided lower roughness than at baseline. Grinding, followed or not by polishing, and mechanical aging did not adversely affect the fracture resistance or the reliability of the materials. CONCLUSIONS: Polishing did not recover the initial surface roughness of the glass-ceramic materials. Fracture resistance was not affected by grinding, followed or not by polishing, even after mechanical aging.


Subject(s)
Ceramics , Dental Porcelain , Computer-Aided Design , Materials Testing , Reproducibility of Results , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...