Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Veg Hist Archaeobot ; 31(1): 67-84, 2022.
Article in English | MEDLINE | ID: mdl-35068701

ABSTRACT

The taxonomic resolution of palynological identification is determined by morphological criteria that are used to define pollen types. Different levels of taxonomic resolution are reached in palynology, depending on several factors such as the analyst's expertise, the palynological school, the aim of the study, the preservation of the pollen grains, the reference collections and the microscope facilities. Previous research has suggested that attaining pollen records with high taxonomic resolution is important to reconstruct correctly past land use and human impact. This is in turn central to disentangling past human activities from other drivers of long-term vegetation dynamics such as natural disturbance or climate variability. In this study, we assess the impact of taxonomic resolution on the indicative capacity of anthropogenic pollen types. To achieve this, we attribute the pollen types of sixteen sedimentary records, located along a latitudinal gradient spanning from Switzerland to Italy, to three levels of taxonomic resolution previously proposed at the European scale. Our results show that higher taxonomic resolution improves the identification of human impact by enhancing the indicative power of important pollen indicators widely used in the research field. Our results may contribute to the improvement of palynological reconstructions of land use and human impact by identifying key pollen types whose determination requires particular attention. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00334-021-00838-x.

2.
J Econ Entomol ; 111(1): 43-52, 2018 02 09.
Article in English | MEDLINE | ID: mdl-29267963

ABSTRACT

The Asian chestnut gall wasp (ACGW; Dryocosmus kuriphilus Yasumatsu, Hymenoptera, Cynipidae) is considered as one of the most dangerous pests of the genus Castanea. In southern Switzerland, repeated heavy ACGW attacks prevented chestnut trees from vegetating normally for years before the arrival and spread of the biological control agent Torymus sinensis (Kamijo, Hymenoptera, Torymidae). This resulted in a greatly reduced green biomass and flower production. In this paper, we analyze the impact of such an ecosystem alteration of the environment on the composition of produced honey. Six beekeepers were chosen from sites with different densities of chestnut trees, each of which providing series of honey samples from 2010 to 2016. We determined the chestnut component in the honeys via a combined chemical and sensory approach, and correlated the obtained results with the degree of yearly ACGW-induced crown damage and weather conditions during the period in question in the surrounding chestnut stands. The chestnut component in the analyzed honey sample series showed a strong correlation with the degree of ACGW-induced crown damage, whereas meteorological conditions of the corresponding year had a very marginal effect. Decreases in the chestnut component of the honey were statistically significant starting from a ACGW infestation level of 30%.


Subject(s)
Fagaceae/chemistry , Honey/analysis , Wasps/physiology , Animals , Beekeeping , Plant Tumors/etiology , Switzerland
3.
J Environ Manage ; 146: 373-382, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25203440

ABSTRACT

The assumption that increased wildfire incidence in the Mediterranean Basin during the last decades is an outcome of changes in land use warrants an objective analysis. In this study we examine how annual area burned (BA) in the Portuguese public forest varied in relation to environmental and human-influenced drivers during the 1943-2011 period. Fire behaviour models were used to describe fuel hazard considering biomass removal, cover type changes, area burned, post-disturbance fuel accumulation, forest age-classes distribution and fuel connectivity. Biomass removal decreased rapidly beyond the 1940s, which, along with afforestation, increased fuel hazard until the 1980s; a subsequent decline was caused by increased fire activity. Change point analysis indicates upward shifts in BA in 1952 and in 1973, both corresponding to six-fold increases. Fire weather (expressed by the 90th percentile of the Canadian FWI during summer) increased over the study period, accounting for 18 and 36% of log(BA) variation before 1974 and after 1973, respectively. Regression modelling indicates that BA responds positively to fire weather, fuel hazard and number of fires in descending order of importance; pre-summer and 2-year lagged precipitation respectively decrease and increase BA, but the effects are minor and non-significant when both variables are included in the model. Land use conflicts (expressed through more fires) played a role, but it was afforestation and agricultural abandonment that supported the fire regime shifts, explaining weather-drought as the current major driver of BA as well. We conclude that bottom-up factors, i.e. human-induced changes in landscape flammability and ignition density, can enhance or override the influence of weather-drought on the fire regime in Mediterranean humid regions. A more relevant role of fuel control in fire management policies and practices is warranted by our findings.


Subject(s)
Biomass , Fires , Forests , Climate Change , Droughts , Environmental Monitoring/methods , Humans , Mediterranean Region , Models, Theoretical , Weather
4.
Ecol Evol ; 4(4): 408-16, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24634725

ABSTRACT

RECENT INVESTIGATIONS HAVE SHOWN THAT TWO COMPONENTS OF COMMUNITY TRAIT COMPOSITION ARE IMPORTANT FOR KEY ECOSYSTEM PROCESSES: (i) the community-weighted mean trait value (CWM), related to the mass ratio hypothesis and dominant trait values in the community, and (ii) functional diversity (FD), related to the complementarity hypothesis and the divergence of trait values. However, no experiments controlling for the inherent dependence between CWM and FD have been conducted so far. We used a novel experimental framework to disentangle the unique and shared effects of CWM and FD in a leaf litter-macrodetritivore model system. We manipulated isopod assemblages varying in species number, CWM and FD of litter consumption rate to test the relative contribution of these community parameters in the decomposition process. We showed that CWM, but also the combination of CWM and FD, is a main factor controlling litter decomposition. When we tested individual biodiversity components separately, CWM of litter consumption rate showed a significant effect on decomposition, while FD and species richness alone did not. Our study demonstrated that (i) trait composition rather than species diversity drives litter decomposition, (ii) dominant trait values in the community (CWM) play a chief role in driving ecosystem processes, corroborating the mass ratio hypothesis, and (iii) trait dissimilarity can contribute in modulating the overall biodiversity effects. Future challenge is to assess whether the generality of our finding, that is, that dominant trait values (CWM) predominate over trait dissimilarity (FD), holds for other ecosystem processes, environmental conditions and different spatial and temporal scales.

5.
Theory Biosci ; 129(1): 53-69, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20502984

ABSTRACT

"Fire regime" has become, in recent decades, a key concept in many scientific domains. In spite of its wide spread use, the concept still lacks a clear and wide established definition. Many believe that it was first discussed in a famous report on national park management in the United States, and that it may be simply defined as a selection of a few measurable parameters that summarize the fire occurrence patterns in an area. This view has been uncritically perpetuated in the scientific community in the last decades. In this paper we attempt a historical reconstruction of the origin, the evolution and the current meaning of "fire regime" as a concept. Its roots go back to the 19th century in France and to the first half of the 20th century in French African colonies. The "fire regime" concept took time to evolve and pass from French into English usage and thus to the whole scientific community. This coincided with a paradigm shift in the early 1960s in the United States, where a favourable cultural, social and scientific climate led to the natural role of fires as a major disturbance in ecosystem dynamics becoming fully acknowledged. Today the concept of "fire regime" refers to a collection of several fire-related parameters that may be organized, assembled and used in different ways according to the needs of the users. A structure for the most relevant categories of parameters is proposed, aiming to contribute to a unified concept of "fire regime" that can reconcile the physical nature of fire with the socio-ecological context within which it occurs.


Subject(s)
Ecosystem , Fires/history , Africa , France , History, 19th Century , History, 20th Century , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...