Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(13)2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37447519

ABSTRACT

Biodegradable polyesters are a popular choice for both packaging and medical device manufacture owing to their ability to break down into harmless components once they have completed their function. However, commonly used polyesters such as poly(hydroxybutyrate) (PHB), poly(lactic acid) (PLA), and polycaprolactone (PCL), while readily available and have a relatively low price compared to other biodegradable polyesters, do not meet the degradation profiles required for many applications. As such, this study aimed to determine if the mechanical and degradation properties of biodegradable polymers could be tailored by blending different polymers. The seawater degradation mechanisms were evaluated, revealing surface erosion and bulk degradation in the blends. The extent of degradation was found to be dependent on the specific chemical composition of the polymer and the blend ratio, with degradation occurring via hydrolytic, enzymatic, oxidative, or physical pathways. PLA presents the highest tensile strength (67 MPa); the addition of PHB and PCL increased the flexibility of the samples; however, the tensile strength reduced to 25.5 and 18 MPa for the blends 30/50/20 and 50/25/25, respectively. Additionally, PCL presented weight loss of up to 10 wt.% and PHB of up to 6 wt.%; the seawater degradation in the blends occurs by bulk and surface erosion. The blending process facilitated the flexibility of the blends, enabling their use in diverse industrial applications such as medical devices and packaging. The proposed methodology produced biodegradable blends with tailored properties within a seawater environment. Additionally, further tests that fully track the biodegradation process should be put in place; incorporating compatibilizers might promote the miscibility of different polymers, improving their mechanical properties and biodegradability.

2.
Gels ; 5(3)2019 Aug 29.
Article in English | MEDLINE | ID: mdl-31470691

ABSTRACT

Previous studies involving poly N-vinylcaprolactam (PNVCL) and itaconic acid (IA) have synthesised the hydrogels with the presence of a solvent and a crosslinker, producing chemically crosslinked hydrogel systems. In this study, however, temperature sensitive PNVCL was physically crosslinked with a pH-sensitive comonomer IA through ultraviolet (UV) free-radical polymerization, without the presence of a solvent, to produce hydrogels with dual sensitivity. The attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy indicated successful polymerisation of the hydrogels. The temperature and pH sensitivity of the hydrogels was investigated. The lower critical solution temperature (LCST) of the gels was determined using the UV spectrometry and it was found that the incorporation of IA decreased the LCST. Rheology was conducted to investigate the mechanical and viscoelastic properties of the hydrogels, with results indicating IA that enhances the mechanical properties of the gels. Swelling studies were carried out at ~20 °C and 37 °C in different buffer solutions simulating the gastrointestinal tract (pH 2.2 and pH 6.8). In acidic conditions, the gels showed gradual increase in swelling while remaining structurally intact. While in basic conditions, the gels had a burst in swelling and began to gradually degrade after 30 min. Results were similar for drug release studies. Acetaminophen was incorporated into the hydrogels. Drug dissolution studies were carried out at 37 °C in pH 2.2 and pH 6.8. It was found that <20% of acetaminophen was released from the gels in pH 2.2, whereas the maximum drug released at pH 6.8 was 74%. Cytotoxicity studies also demonstrated the hydrogels to be highly biocompatible. These results indicate that physically crosslinked P(NVCL-IA) gels possess dual pH and temperature sensitive properties, which may be beneficial for biomedical applications such as drug delivery.

3.
Pharmaceutics ; 11(5)2019 May 18.
Article in English | MEDLINE | ID: mdl-31109108

ABSTRACT

Micro-injection moulding (µIM) was used for the production of enteric tablets of plasticised and unplasticised solid dispersions of poly(vinylpyrrolidone-vinyl acetate) (PVPVA), and the effect of the mechanical and thermal treatment on the properties of the dispersions was investigated. The physical state of the systems showed to be unaltered by the µIM step, maintaining the drug in the amorphous state. The dissolution profile of the tablets showed a slower dissolution rate due to the lower surface to volume ratio compared to the extruded strands. The lack of solubility of the doses in the acidic medium as a consequence of the acidity of indomethacin (IND) was observed. However, in neutral pH the drug dissolution showed slower rates without affecting the dissolution extent, showing a potential application for the development of controlled release doses. Overall, the production of tablets of amorphous solid dispersions (ASD), coupling hot-melt extrusion (HME) and µIM, proved to be a successful approach towards a continuous automated manufacturing process to improve the aqueous solubility of poorly water-soluble drugs.

4.
Int J Pharm ; 549(1-2): 50-57, 2018 Oct 05.
Article in English | MEDLINE | ID: mdl-30016675

ABSTRACT

The investigation of the miscibility between active pharmaceutical ingredients (API's) and polymeric excipients is of great interest for the formulation and development of amorphous solid dispersions, especially in the context of the prediction of the stability of these systems. Two different methods were applied to determine the miscibility between model compounds poly(vinylpyrrolidone-co-vinyl acetate) (PVPVA) and indomethacin (IND), viz. the measurement of the glass transition temperature (Tg) and the melting point depression method framed on the Flory-Huggins theory. Measurement of the glass transition temperatures of the binary blends showed the formation of an amorphous single phase system between the PVPVA and the IND regardless of the composition. Variation of Tg with the composition was well described by the Gordon-Taylor equation leading to the error of concluding lack of intermolecular interactions between the materials. Application of the Brostow-Chiu-Kalogeras-Vassilikou-Dova (BCKV) model shows a negative interaction parameter (a0) suggesting the presence of drug-drug intermolecular interactions. Application of the melting point depression method within the framework of the Flory-Huggins theory proved the miscibility of the system at temperatures close to the melting point of IND.


Subject(s)
Chemistry, Pharmaceutical/methods , Excipients/chemistry , Indomethacin/chemistry , Pyrrolidines/chemistry , Vinyl Compounds/chemistry , Drug Stability , Models, Chemical , Phase Transition , Solubility , Temperature , Transition Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...