Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Eur Acad Dermatol Venereol ; 33(2): 367-375, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30357932

ABSTRACT

BACKGROUND: Janus kinase (JAK) inhibition may be a promising new treatment modality for inflammatory (skin) diseases. However, little is known about direct effects of kinase inhibitors on keratinocyte differentiation and function as well as skin barrier formation. OBJECTIVE: Our aim was to address the direct impact of kinase inhibition of the JAK1/3 pathways by tofacitinib on keratinocyte immune function and barrier formation in atopic dermatitis (AD) and psoriasis. METHODS: 3D skin equivalents of both diseases were developed and concurrently pretreated with tofacitinib. To induce AD, 3D skin equivalents were stimulated with recombinant human IL-4 and IL-13. Psoriasis-like conditions were induced by incubation with IL-17A, IL-22 and tumour necrosis factor α (TNFα). The activation of signal transducer and activator of transcription (STAT)1, STAT3 and STAT6 was assessed by Western blot analysis. Microarray analysis and quantitative real-time PCR were used for gene expression analysis. RESULTS: Tofacitinib pretreatment preserved epidermal morphology and reduced STAT3 and STAT6 phosphorylation of AD-like and STAT3 phosphorylation of psoriasis-like culture conditions in 3D skin models compared to sham-controls. Filaggrin expression was fully maintained in the AD-like models, but only partially in psoriasis-like conditions after pretreatment with tofacitinib. In addition, tofacitinib upregulated DSC1, FLG and KRT1. Using gene expression analysis, downregulation of POSTN and IL24 was observed in AD-like conditions, whereas downregulation of IL20 and IL1B was observed in psoriasis-like conditions. CONCLUSION: JAK1/3 inhibition counteracted cytokine-induced AD- and psoriasis-like epidermal morphology and enhanced keratinocyte differentiation in 3D skin models. This effect was more pronounced in the AD-like models compared to the psoriasis-like 3D skin models.


Subject(s)
Dermatitis, Atopic/pathology , Imaging, Three-Dimensional , Intermediate Filament Proteins/pharmacology , Janus Kinase 1/drug effects , Piperidines/pharmacology , Psoriasis/pathology , Pyrimidines/pharmacology , Pyrroles/pharmacology , Cell Proliferation/drug effects , Computer Simulation , Dermatitis, Atopic/drug therapy , Filaggrin Proteins , Humans , Keratinocytes/cytology , Keratinocytes/drug effects , Psoriasis/drug therapy , STAT6 Transcription Factor/drug effects , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...