Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 279(51): 53306-16, 2004 Dec 17.
Article in English | MEDLINE | ID: mdl-15448157

ABSTRACT

The conversion into abnormally folded prion protein (PrP) plays a key role in prion diseases. PrP(C) carries two N-linked glycan chains at amino acid residues 180 and 196 (mouse). Previous in vitro data indicated that the conversion process may not require glycosylation of PrP. However, it is conceivable that these glycans function as intermolecular binding sites during the de novo infection of cells on susceptible organisms and/or play a role for the interaction of both PrP isoforms. Such receptor-like properties could contribute to the formation of specific prion strains. However, in earlier studies, mutations at the glycosylation sites of PrP led to intracellular trafficking abnormalities, which made it impossible to generate PrP glycosylation-deficient mice that were susceptible to bovine spongiform encephalopathy (BSE) or scrapie. We have now tested more than 25 different mutations at both consensus sites and found one nonglycosylated (T182N/T198A) and two monoglycosylated (T182N and T198A) mutants that rather retained authentic cellular trafficking properties. In vitro all three mutants were converted into PrP(res). PrP mutant T182N/T198A also provoked a strong dominant-negative inhibition on the endogenous wild type PrP conversion reaction. By using the two monoglycosylated mutants, we generated transgenic mice overexpressing PrP(C) in their brains at levels of 2-4 times that of nontransgenic mice. Most interestingly, such mice proved readily susceptible to a challenge with either scrapie (Chandler and Me7) or with BSE. Incubation times were comparable or in some instances even significantly shorter than those of nontransgenic mice. These data indicate that diglycosylation of PrP(C) is not mandatory for prion infection in vivo.


Subject(s)
Encephalopathy, Bovine Spongiform/metabolism , Polysaccharides/chemistry , Prions/chemistry , Scrapie/metabolism , Animals , Binding Sites , Biotinylation , Blotting, Western , Brain/pathology , CHO Cells , Cattle , Cell Line , Cell Line, Tumor , Cell Separation , Cloning, Molecular , Cricetinae , Disulfides/chemistry , Flow Cytometry , Glycosylation , Immunoprecipitation , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mutation , Prion Diseases/metabolism , Protein Isoforms , Transgenes
2.
J Gen Virol ; 83(Pt 1): 167-172, 2002 Jan.
Article in English | MEDLINE | ID: mdl-11752713

ABSTRACT

This study describes genetic differences in resistance/susceptibility to pseudorabies virus (PrV) between European Large White and Chinese Meishan pigs, with a mapping of quantitative trait loci (QTL) obtained from a genome-wide scan in F(2) animals. Eighty-nine F(2) pigs were challenged intranasally at 12 weeks with 10(5) p.f.u. of the wild-type PrV strain NIA-3. For QTL analysis, 85 microsatellite markers, evenly spaced on the 18 porcine autosomes and on the pseudoautosomal region of the X chromosome, were genotyped. All pigs developed clinical signs, i.e. fever, from 3 to 7 days p.i. The pure-bred Large White pigs, the F(1) and three-quarters of the F(2) animals, but none of the Meishan pigs, developed neurological symptoms and died or were euthanized. QTLs for appearance/non-appearance of neurological symptoms were found on chromosomes 9, 5, 6 and 13. They explained 10.6-17.9% of F(2) phenotypic variance. QTL effects for rectal temperature after PrV challenge were found on chromosomes 2, 4, 8, 10, 11 and 16. Effects on chromosomes 9, 10 and 11 were significant on a genome-wide level. The results present chromosomal regions that are associated with presence/absence of neurological symptoms as well as temperature course after intranasal challenge with NIA-3. The QTLs are in proximity to important candidate genes that are assumed to play crucial roles in host defence against PrV.


Subject(s)
Pseudorabies/genetics , Quantitative Trait, Heritable , X Chromosome , Animals , Genetic Predisposition to Disease/genetics , Herpesvirus 1, Suid , Immunity, Innate/genetics , Phenotype , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...