Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 207: 117835, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34775170

ABSTRACT

Bacterial alginate-like exopolymers (ALE) gels have been used in this work as a model for the extracellular polymeric matrix of biofilms. Aim was to relate the mechanical properties and strength of this matrix that make biofilms as persistent to cleaning as they are, to the complex cohesive molecular interactions involved. Mechanical properties of the gels as a function of CaCO3 concentration were investigated using dynamic and static rheology. Gels with relatively low CaCO3 concentrations, between 100 µmol and 300 µmol per g ALE, were found to exhibit similar viscoelastic behaviour as real biofilms, with elastic moduli between 50 Pa and 100 Pa and dissipation factors between 0.2 and 0.3. Increasing CaCO3 concentrations resulted in an increase of the elastic modulus up to 250 Pa, accompanied by an increase in brittleness. At a CaCO3 concentration of 1250 µmol per g ALE this trend stopped, probably due to disturbance of the continuous ALE network by precipitation of salts. Therefore, overdosing of Ca salts can be an adequate approach for the removal of biofouling. All gels exhibited permanent strain hardening under medium strain, and their mechanical properties showed dependency on their strain history. Even after application of an oscillatory strain with 200% amplitude that caused the gel structure to collapse, the gels recovered 65 to 90% of their original shear modulus, for the major part within the first 20 s. Recovery was slightly less for gels with high CaCO3 concentration. In creep tests fitted with a Burgers model with multiple Kelvin elements at least three different interactions in the ALE gels could be distinguished with characteristic retardation times in the range of 10, 100 and 1000 s. Further identification of the mechanisms underlying the gel mechanics will allow the development of targeted strategies to undermine the mechanical strength of biofouling and aid the cleaning process.


Subject(s)
Alginates , Extracellular Polymeric Substance Matrix , Calcium , Gels , Rheology
2.
Water Res ; 195: 116959, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33676179

ABSTRACT

The properties of biofilm EPS are determined by the multiple interactions between its constituents and the surrounding environment. Because of the high complexity of biofilm EPS, its constituents' characterisation is still far from thorough, and identification of these interactions cannot be done yet. Therefore, we use gels of bacterial alginate-like exopolysaccharides (ALEs) as a model component for biofilm EPS in this work. These gels have been examined for their cohesive properties as a function of CaCl2 and KCl concentration. Hereto, ALE gel layers were formed on membranes by dead-end filtration of ALE solutions. Accumulation of the cations Ca2+ and K+ in the gels could be well predicted from a Donnan equilibrium model based on the fixed negative charges in the ALE. This suggests that there is no specific binding of Ca2+ to the ALE and that on the time scale of the experiments, the Ca2+ ions can distribute freely over the gel and the surrounding solution. The concentration of fixed negative charges in the ALE was estimated around 1 mmol/g VSS (volatile suspended solids, organic mass) from the Donnan equilibrium. Moreover, an accumulation of H+ was predicted. Gels with more CaCl2 in the supernatant were more compact and bore a higher osmotic pressure than those with less CaCl2, revealing the role of Ca2+ ions in the network crosslinking. It is hypothesised that this mechanism later transitions into a rearrangement of the ALE molecules, which eventually leads to a fibrous network structure with large voids.


Subject(s)
Alginates , Extracellular Polymeric Substance Matrix , Biofilms , Gels , Ions
SELECTION OF CITATIONS
SEARCH DETAIL
...